Inequalities for the Heinz mean of sector matrices involving positive linear maps

被引:7
作者
Yang, Chaojun [1 ]
Lu, Fangyan [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
关键词
Sector matrices; Positive linear maps; Heinz mean; Inequality; NORM INEQUALITIES;
D O I
10.1007/s43034-020-00070-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some Heinz mean inequalities for sector matrices involving positive linear maps which generalize the results of Mao et al. Moreover, we give some inequalities involving the mean of inverse sector matrices and the inverse of the mean of sector matrices involving positive linear maps.
引用
收藏
页码:866 / 878
页数:13
相关论文
共 22 条
[1]   CONCAVITY OF CERTAIN MAPS ON POSITIVE DEFINITE MATRICES AND APPLICATIONS TO HADAMARD PRODUCTS [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 26 (AUG) :203-241
[2]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[3]  
Bhatia R., 1997, MATRIX ANAL, DOI [10.1007/978-1-4612-0653-8, DOI 10.1007/978-1-4612-0653-8]
[4]   SINGULAR VALUE INEQUALITIES FOR MATRICES WITH NUMERICAL RANGES IN A SECTOR [J].
Drury, Stephen ;
Lin, Minghua .
OPERATORS AND MATRICES, 2014, 8 (04) :1143-1148
[5]   Principal powers of matrices with positive definite real part [J].
Drury, Stephen .
LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (02) :296-301
[6]   Inequalities for accretive-dissipative matrices [J].
Kittaneh, Fuad ;
Sakkijha, Mona .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (05) :1037-1042
[7]   A property of the geometric mean of accretive operators [J].
Lin, Minghua ;
Sun, Fangfang .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03) :433-437
[8]   SOME INEQUALITIES FOR SECTOR MATRICES [J].
Lin, Minghua .
OPERATORS AND MATRICES, 2016, 10 (04) :915-921
[9]   Extension of a result of Haynsworth and Hartfiel [J].
Lin, Minghua .
ARCHIV DER MATHEMATIK, 2015, 104 (01) :93-100
[10]   Squaring a reverse AM-GM inequality [J].
Lin, Minghua .
STUDIA MATHEMATICA, 2013, 215 (02) :187-194