Hybrid preconditioned algorithms for boundary hypersingular integral equations

被引:0
作者
Fadrony, DRV [1 ]
机构
[1] Univ Tehran, Fac Sci, Dept Math & Comp Sci, Tehran, Iran
关键词
integral equations; hypersingular equation; preconditioning; boundary integral equations;
D O I
10.1016/j.amc.2004.06.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three preconditioners for solving boundary hypersingular integral equations of the first kind are proposed. The first and the second preconditioners are based on circulant operators. The third is a hybrid of iterative substructuring techniques and circulant operators. Although this class of preconditioners are composition of circulant operators but we have shown that the condition number of the third preconditioner dose not exceed the condition number of two preconditioners. Numerical results are included. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:531 / 550
页数:20
相关论文
共 19 条
[1]  
ADAMS RA, 1978, PURE APPL MATH SERIE, V65
[2]  
Ainsworth M., 2002, APPL ANAL, V81, P241
[3]  
[Anonymous], 1992, ONE DIMENSIONAL LINE
[4]  
Axelsson O., 1984, Finite Element Solution of Boundary Value Problems: Theory and Computation
[5]   On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack [J].
Chapko, R ;
Kress, R ;
Mönch, L .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (04) :601-619
[6]   Preconditioned semilinear stochastic singular and hypersingular integral equations [J].
Fadrani, DRV ;
Maleknejad, K .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2000, 18 (06) :949-965
[7]   Preconditioners for solving stochastic boundary integral equations with weakly singular kernels [J].
Rostami Varnos Fadrani D. ;
Maleknejad K. .
Computing, 1999, 63 (1) :47-67
[8]  
FADRANI DRV, 2000, B IRAN MATH SOC, V26, P7
[9]   The numerical solution of a nonlinear hypersingular boundary integral equation [J].
Ganesh, M ;
Steinbach, O .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) :267-280
[10]   FAST PRECONDITIONED CONJUGATE-GRADIENT ALGORITHMS FOR WIENER-HOPF INTEGRAL-EQUATIONS [J].
GOHBERG, I ;
HANKE, M ;
KOLTRACHT, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :429-443