A Multi-Stage Stochastic Risk Assessment With Markovian Representation of Renewable Power

被引:6
作者
Lara, Jose Daniel [1 ]
Dowson, Oscar [2 ]
Doubleday, Kate [3 ,4 ,5 ]
Hodge, Bri-Mathias [3 ,4 ,5 ]
Callaway, Duncan S. [1 ]
机构
[1] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA
[2] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
[3] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[4] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
[5] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
Probabilistic logic; Predictive models; Generators; Uncertainty; Risk management; Computational modeling; Renewable energy sources; forecasting; power generation dispatch; power generation dispatcholar power; risk; Solar power; PROBABILISTIC-FORECASTS; UNIT COMMITMENT; OPTIMIZATION; BENCHMARK; SCENARIOS;
D O I
10.1109/TSTE.2021.3114615
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Probabilistic forecasts provide a distribution of possible outputs and so can capture the uncertainty and variability of Variable Renewable Energy (VRE). However, taking advantage of uncertainty information has practical challenges that make it difficult to integrate probabilistic forecasting into control room decision-making. This paper proposes a novel use-case for probabilistic forecasts by incorporating them into the hour-ahead operations for situational awareness via a risk-averse multi-stage stochastic program. We employ a Markovian representation of the probabilistic forecasts that enables the formulation of the multi-stage problem and avoids a scenario generation phase. We test the model on a realistically sized system to assess risk and showcase the capability of using probabilistic renewable forecast as input to produce probabilistic output forecasts of future system states. The results show that the model can capture time consistency in the reserves and Area Control Error (ACE) forecast. The solution times are adequate for risk profiling in hour-ahead timescales.
引用
收藏
页码:414 / 426
页数:13
相关论文
共 42 条
[1]  
[Anonymous], 2018, 20181111 NREL
[2]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[3]   Quantile forecast discrimination ability and value [J].
Ben Bouallegue, Zied ;
Pinson, Pierre ;
Friederichs, Petra .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2015, 141 (693) :3415-3424
[4]   Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry [J].
Bessa, Ricardo J. ;
Mohlen, Corinna ;
Fundel, Vanessa ;
Siefert, Malte ;
Browell, Jethro ;
El Gaidi, Sebastian Haglund ;
Hodge, Bri-Mathias ;
Cali, Umit ;
Kariniotakis, George .
ENERGIES, 2017, 10 (09)
[5]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[6]   Grid Structural Characteristics as Validation Criteria for Synthetic Networks [J].
Birchfield, Adam B. ;
Xu, Ti ;
Gegner, Kathleen M. ;
Shetye, Komal S. ;
Overbye, Thomas J. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) :3258-3265
[7]  
Blevins B, 2016, 2016 METHODOLOGY DET
[8]   Probabilistic Solar Power Forecasting Using Bayesian Model Averaging [J].
Doubleday, Kate ;
Jascourt, Stephen ;
Kleiber, William ;
Hodge, Bri-Mathias .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (01) :325-337
[9]   Benchmark probabilistic solar forecasts: Characteristics and recommendations [J].
Doubleday, Kate ;
Hernandez, Vanessa Van Scyoc ;
Hodge, Bri-Mathias .
SOLAR ENERGY, 2020, 206 :52-67
[10]   SDDP.j1: A Julia Package for Stochastic Dual Dynamic Programming [J].
Dowson, Oscar ;
Kapelevich, Lea .
INFORMS JOURNAL ON COMPUTING, 2021, 33 (01) :27-33