Global regularity for almost minimizers of nonconvex variational problems

被引:61
作者
Foss, M. [1 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
关键词
regularity; asymptotic convexity; almost minimizer;
D O I
10.1007/s10231-007-0045-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some global, up to the boundary of a domain Omega subset of R-n, continuity and Lipschitz regularity results for almost minimizers of functionals of the form u -> integral(Omega) g (x, u(x), del u(x)) dx. The main assumption for g is that it be asymptotically convex with respect its third argument. For the continuity results, the integrand is allowed to have some discontinuous behavior with respect to its first and second arguments. For the global Lipschitz regularity result, we require g to be Holder continuous with respect to its first two arguments.
引用
收藏
页码:263 / 321
页数:59
相关论文
共 25 条
[1]  
Benedetti I., 2004, ABSTR APPL ANAL, P27
[2]  
CAMPANATO S, 1963, RIC MAT, V12, P67
[3]   LINEARIZATION AT INFINITY AND LIPSCHITZ ESTIMATES FOR CERTAIN PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
CHIPOT, M ;
EVANS, LC .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 102 :291-303
[4]  
Cupini G, 2003, J CONVEX ANAL, V10, P389
[5]   Regularity of minimizers of vectorial integrals with p-q growth [J].
Cupini, G ;
Guidorzi, M ;
Mascolo, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :591-616
[6]  
Cupini G., 2001, REND MAT, V21, P121
[7]   The existence of regular boundary points for non-linear elliptic systems [J].
Duzaar, Frank ;
Kristensen, Jan ;
Mingione, Giuseppe .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 602 :17-58
[8]   Sharp regularity for functionals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 204 (01) :5-55
[9]   Regularity results for minimizers of irregular integrals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
FORUM MATHEMATICUM, 2002, 14 (02) :245-272
[10]   An existence result for a nonconvex variational problem via regularity [J].
Fonseca, I ;
Fusco, N ;
Marcellini, P .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (04) :69-95