Cocycle deformations, braided monoidal categories and quasitriangularity

被引:5
作者
Chen, HX [1 ]
机构
[1] Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China
[2] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 1999年 / 44卷 / 06期
关键词
strong cocycle; Yang-Baxter operator; braided monoidal category; quasitriangular bialgebra;
D O I
10.1007/BF02885536
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let A be a bialgebra, R is an element of A X A be a strong "cocycle". It will be shown that the monoidal category A(M) has a braided monoidal subcategory and several equivalent conditions for (A, R) to be a quasitriangular bialgebra will be given. Furthermore, it will be shown that A contains a finite dimensional subbialgebra which is a quasitriangular Hopf algebra if R is a YB-operator.
引用
收藏
页码:510 / 513
页数:4
相关论文
共 36 条
[31]   The Brauer group of central separable monoids in a braided monoidal category [J].
Vilaboa, JMF ;
Rodríguez, RG ;
Novoa, EV .
ALGEBRA COLLOQUIUM, 2002, 9 (04) :399-416
[32]   CONSTRUCTION OF A BRAIDED MONOIDAL CATEGORY FOR BRZEZINSKI CROSSED COPRODUCTS OF HOPF π-ALGEBRAS [J].
Ma , Tianshui ;
Li , Haiying ;
Xu , Shaoxian .
COLLOQUIUM MATHEMATICUM, 2017, 149 (02) :309-323
[33]   THE BRAIDED MONOIDAL STRUCTURES ON THE CATEGORY OF VECTOR SPACES GRADED BY THE KLEIN GROUP [J].
Bulacu, D. ;
Caenepeel, S. ;
Torrecillas, B. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 :613-641
[34]   On Braided Lie Structures of Algebras in the Categories of Weak Hopf Bimodules [J].
Wang, Shuan-hong ;
Zhu, Hai-xing .
ALGEBRA COLLOQUIUM, 2010, 17 (04) :685-698
[35]   Two-cocycles and cleft extensions in left braided categories [J].
Heckenberger, Istvan ;
Wolf, Kevin .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (01)
[36]   The right braids, quasi-braided pre-tensor categories, and general Yang-Baxter operators [J].
Li, F .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (02) :397-441