Cocycle deformations, braided monoidal categories and quasitriangularity

被引:5
作者
Chen, HX [1 ]
机构
[1] Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China
[2] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 1999年 / 44卷 / 06期
关键词
strong cocycle; Yang-Baxter operator; braided monoidal category; quasitriangular bialgebra;
D O I
10.1007/BF02885536
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let A be a bialgebra, R is an element of A X A be a strong "cocycle". It will be shown that the monoidal category A(M) has a braided monoidal subcategory and several equivalent conditions for (A, R) to be a quasitriangular bialgebra will be given. Furthermore, it will be shown that A contains a finite dimensional subbialgebra which is a quasitriangular Hopf algebra if R is a YB-operator.
引用
收藏
页码:510 / 513
页数:4
相关论文
共 36 条
[21]   The Braided Monoidal Structures on a Class of Linear Gr-Categories [J].
Hua-Lin Huang ;
Gongxiang Liu ;
Yu Ye .
Algebras and Representation Theory, 2014, 17 :1249-1265
[22]   The Braided Monoidal Structures on a Class of Linear Gr-Categories [J].
Huang, Hua-Lin ;
Liu, Gongxiang ;
Ye, Yu .
ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (04) :1249-1265
[23]   A class of braided monoidal categories via quasitriangular Hopf π-crossed coproduct algebras [J].
Ma, Tianshui ;
Liu, Linlin ;
Li, Haiying .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (02)
[24]   Smash coproduct and braided groups in braided monoidal category [J].
李金其 ;
许永华 .
Science China Mathematics, 1997, (11) :1121-1128
[25]   Smash coproduct and braided groups in braided monoidal category [J].
Li, JQ ;
Xu, YH .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (11) :1121-1128
[26]   Smash coproduct and braided groups in braided monoidal category [J].
Jinqi Li ;
Yonghua Xu .
Science in China Series A: Mathematics, 1997, 40 :1121-1128
[27]   Iterated monoidal categories [J].
Balteanu, C ;
Fiedorowicz, Z ;
Schwänzl, R ;
Vogt, R .
ADVANCES IN MATHEMATICS, 2003, 176 (02) :277-349
[28]   Entwining structures in monoidal categories [J].
Mesablishvili, Bachuki .
JOURNAL OF ALGEBRA, 2008, 319 (06) :2496-2517
[29]   The Braided Monoidal Structure on the Category of Comodules of Bimonads [J].
Shen, Bingliang ;
Zou, Xiaoguang .
ALGEBRA COLLOQUIUM, 2019, 26 (04) :565-578
[30]   ON THE BRAIDED MONOIDAL CATEGORY OF W-SMASH COPRODUCT COMODULE [J].
Dong, Lihong ;
Jiao, Zhengming .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2010, 3 (02) :295-305