Cocycle deformations, braided monoidal categories and quasitriangularity

被引:5
|
作者
Chen, HX [1 ]
机构
[1] Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China
[2] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 1999年 / 44卷 / 06期
关键词
strong cocycle; Yang-Baxter operator; braided monoidal category; quasitriangular bialgebra;
D O I
10.1007/BF02885536
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let A be a bialgebra, R is an element of A X A be a strong "cocycle". It will be shown that the monoidal category A(M) has a braided monoidal subcategory and several equivalent conditions for (A, R) to be a quasitriangular bialgebra will be given. Furthermore, it will be shown that A contains a finite dimensional subbialgebra which is a quasitriangular Hopf algebra if R is a YB-operator.
引用
收藏
页码:510 / 513
页数:4
相关论文
共 50 条
  • [1] Cocycle deformations, braided monoidal categories and quasitriangularity
    CHEN HuixiangDepartment of Mathematics
    Institute of Mathematics
    ChineseScienceBulletin, 1999, (06) : 510 - 513
  • [2] Monoidal Categories Enriched in Braided Monoidal Categories
    Morrison, Scott
    Penneys, David
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (11) : 3527 - 3579
  • [3] Braided and coboundary monoidal categories
    Savage, Alistair
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 229 - 251
  • [4] BRAIDED SKEW MONOIDAL CATEGORIES
    Bourke, John
    Lack, Stephen
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 19 - 63
  • [5] On symbolic computations in braided monoidal categories
    Pareigis, B
    HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 269 - 279
  • [6] Multiplier bialgebras in braided monoidal categories
    Boehm, Gabriella
    Lack, Stephen
    JOURNAL OF ALGEBRA, 2015, 423 : 853 - 889
  • [7] A new approach to braided monoidal categories
    Zhang, Tao
    Wang, Shuanhong
    Wang, Dingguo
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
  • [8] Symmetric centres of braided monoidal categories
    Cai, CR
    Jiang, BX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (04): : 384 - 390
  • [9] An Alternative Description of Braided Monoidal Categories
    Alexei Davydov
    Ingo Runkel
    Applied Categorical Structures, 2015, 23 : 279 - 309
  • [10] Symmetric centres of braided monoidal categories
    蔡传仁
    江宝歆
    Science China Mathematics, 2000, (04) : 384 - 390