Some New q-Congruences for Truncated Basic Hypergeometric Series

被引:26
作者
Guo, Victor J. W. [1 ]
Schlosser, Michael J. [2 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
[2] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 02期
基金
中国国家自然科学基金;
关键词
basic hypergeometric series; supercongruences; q-congruences; cyclotomic polynomial; Andrews' transformation; q-binomial theorem; Q-ANALOGS; SUPERCONGRUENCE; SUMS;
D O I
10.3390/sym11020268
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We provide several new q-congruences for truncated basic hypergeometric series, mostly of arbitrary order. Our results include congruences modulo the square or the cube of a cyclotomic polynomial, and in some instances, parametric generalizations thereof. These are established by a variety of techniques including polynomial argument, creative microscoping (a method recently introduced by the first author in collaboration with Zudilin), Andrews' multiseries generalization of the Watson transformation, and induction. We also give a number of related conjectures including congruences modulo the fourth power of a cyclotomic polynomial.
引用
收藏
页数:12
相关论文
共 35 条
[1]  
Andrews G. E., 1998, CAMBRIDGE MATH LIB
[2]  
Andrews George., 1975, Problems and Prospects for Basic Hypergeometric Functions, P191
[3]  
Calkin NJ, 1998, ACTA ARITH, V86, P17
[4]   MOCK THETA FUNCTIONS AND QUANTUM MODULAR FORMS [J].
Folsom, Amanda ;
Ono, Ken ;
Rhoades, Robert C. .
FORUM OF MATHEMATICS PI, 2013, 1
[5]   Q-CATALAN NUMBERS [J].
FURLINGER, J ;
HOFBAUER, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (02) :248-264
[6]  
Gorodetsky O., 2018, ARXIV180501254V1
[7]   WZ pairs and q-analogues of Ramanujan series for 1/ [J].
Guillera, Jesus .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (12) :1871-1879
[8]  
Guo V.J.W., 2018, ARXIV 2018 1812 0632
[9]   Factors of alternating sums of products of binomial and q-binomial coefficients [J].
Guo, Victor J. W. ;
Jouhet, Frederic ;
Zeng, Jiang .
ACTA ARITHMETICA, 2007, 127 (01) :17-31
[10]   Proof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic polynomial [J].
Guo, Victor J. W. ;
Schlosser, Michael J. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (07) :921-929