Generalization in quantum machine learning from few training data

被引:174
作者
Caro, Matthias C. [1 ,2 ]
Huang, Hsin-Yuan [3 ,4 ]
Cerezo, M. [5 ,6 ]
Sharma, Kunal [7 ]
Sornborger, Andrew [5 ,8 ]
Cincio, Lukasz [9 ]
Coles, Patrick J. [9 ]
机构
[1] Tech Univ Munich, Dept Math, Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Munich, Germany
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[5] Los Alamos Natl Lab, Informat Sci, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[7] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[8] Quantum Sci Ctr, Oak Ridge, TN 37931 USA
[9] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
D O I
10.1038/s41467-022-32550-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modern quantum machine learning (QML) methods involve variationally optimizing a parameterized quantum circuit on a training data set, and subsequently making predictions on a testing data set (i.e., generalizing). In this work, we provide a comprehensive study of generalization performance in QML after training on a limited number N of training data points. We show that the generalization error of a quantum machine learning model with T trainable gates scales at worst as root T/N. When only K << T gates have undergone substantial change in the optimization process, we prove that the generalization error improves to root K/N. Our results imply that the compiling of unitaries into a polynomial number of native gates, a crucial application for the quantum computing industry that typically uses exponential-size training data, can be sped up significantly. We also show that classification of quantum states across a phase transition with a quantum convolutional neural network requires only a very small training data set. Other potential applications include learning quantum error correcting codes or quantum dynamical simulation. Our work injects new hope into the field of QML, as good generalization is guaranteed from few training data.
引用
收藏
页数:11
相关论文
共 98 条
  • [61] Barren plateaus in quantum neural network training landscapes
    McClean, Jarrod R.
    Boixo, Sergio
    Smelyanskiy, Vadim N.
    Babbush, Ryan
    Neven, Hartmut
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [62] Mohri M., 2018, Foundations of Machine Learning
  • [63] Ground-state energy estimation of the water molecule on a trapped-ion quantum computer
    Nam, Yunseong
    Chen, Jwo-Sy
    Pisenti, Neal C.
    Wright, Kenneth
    Delaney, Conor
    Maslov, Dmitri
    Brown, Kenneth R.
    Allen, Stewart
    Amini, Jason M.
    Apisdorf, Joel
    Beck, Kristin M.
    Blinov, Aleksey
    Chaplin, Vandiver
    Chmielewski, Mika
    Collins, Coleman
    Debnath, Shantanu
    Hudek, Kai M.
    Ducore, Andrew M.
    Keesan, Matthew
    Kreikemeier, Sarah M.
    Mizrahi, Jonathan
    Solomon, Phil
    Williams, Mike
    Wong-Campos, Jaime David
    Moehring, David
    Monroe, Christopher
    Kim, Jungsang
    [J]. NPJ QUANTUM INFORMATION, 2020, 6 (01)
  • [64] Nielsen M.A., 2000, Quantum Computation and Quantum Information
  • [65] A practical introduction to tensor networks: Matrix product states and projected entangled pair states
    Orus, Roman
    [J]. ANNALS OF PHYSICS, 2014, 349 : 117 - 158
  • [66] Entanglement devised barren plateau mitigation
    Patti, Taylor L.
    Najafi, Khadijeh
    Gao, Xun
    Yelin, Susanne F.
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [67] Data re-uploading for a universal quantum classifier
    Perez-Salinas, Adrian
    Cervera-Lierta, Alba
    Gil-Fuster, Elies
    Latorre, Jose, I
    [J]. QUANTUM, 2020, 4
  • [68] Absence of Barren Plateaus in Quantum Convolutional Neural Networks
    Pesah, Arthur
    Cerezo, M.
    Wang, Samson
    Volkoff, Tyler
    Sornborger, Andrew T.
    Coles, Patrick J.
    [J]. PHYSICAL REVIEW X, 2021, 11 (04)
  • [69] Poland K, 2020, Arxiv, DOI arXiv:2003.14103
  • [70] POLLARD D., 1984, Convergence of Stochastic Processes. Clinical Perspectives in Obstetrics and Gynecology