Generalization in quantum machine learning from few training data

被引:173
作者
Caro, Matthias C. [1 ,2 ]
Huang, Hsin-Yuan [3 ,4 ]
Cerezo, M. [5 ,6 ]
Sharma, Kunal [7 ]
Sornborger, Andrew [5 ,8 ]
Cincio, Lukasz [9 ]
Coles, Patrick J. [9 ]
机构
[1] Tech Univ Munich, Dept Math, Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Munich, Germany
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[5] Los Alamos Natl Lab, Informat Sci, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[7] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[8] Quantum Sci Ctr, Oak Ridge, TN 37931 USA
[9] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
D O I
10.1038/s41467-022-32550-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modern quantum machine learning (QML) methods involve variationally optimizing a parameterized quantum circuit on a training data set, and subsequently making predictions on a testing data set (i.e., generalizing). In this work, we provide a comprehensive study of generalization performance in QML after training on a limited number N of training data points. We show that the generalization error of a quantum machine learning model with T trainable gates scales at worst as root T/N. When only K << T gates have undergone substantial change in the optimization process, we prove that the generalization error improves to root K/N. Our results imply that the compiling of unitaries into a polynomial number of native gates, a crucial application for the quantum computing industry that typically uses exponential-size training data, can be sped up significantly. We also show that classification of quantum states across a phase transition with a quantum convolutional neural network requires only a very small training data set. Other potential applications include learning quantum error correcting codes or quantum dynamical simulation. Our work injects new hope into the field of QML, as good generalization is guaranteed from few training data.
引用
收藏
页数:11
相关论文
共 98 条
  • [1] The power of quantum neural networks
    Abbas, Amira
    Sutter, David
    Zoufal, Christa
    Lucchi, Aurelien
    Figalli, Alessio
    Woerner, Stefan
    [J]. NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06): : 403 - 409
  • [2] Quantum algorithmic measurement
    Aharonov, Dorit
    Cotler, Jordan
    Qi, Xiao-Liang
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] Effect of barren plateaus on gradient-free optimization
    Arrasmith, Andrew
    Cerezo, M.
    Czarnik, Piotr
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. QUANTUM, 2021, 5
  • [4] Generalization in Quantum Machine Learning: A Quantum Information Standpoint
    Banchi, Leonardo
    Pereira, Jason
    Pirandola, Stefano
    [J]. PRX QUANTUM, 2021, 2 (04):
  • [5] Bartlett P. L., 2003, Journal of Machine Learning Research, V3, P463, DOI 10.1162/153244303321897690
  • [6] Noisy intermediate-scale quantum algorithms
    Bharti, Kishor
    Cervera-Lierta, Alba
    Kyaw, Thi Ha
    Haug, Tobias
    Alperin-Lea, Sumner
    Anand, Abhinav
    Degroote, Matthias
    Heimonen, Hermanni
    Kottmann, Jakob S.
    Menke, Tim
    Mok, Wai-Keong
    Sim, Sukin
    Kwek, Leong-Chuan
    Aspuru-Guzik, Alan
    [J]. REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
  • [7] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [8] Bilkis M, 2024, Arxiv, DOI arXiv:2103.06712
  • [9] Bilkis M, IMPLEMENTATION VANS
  • [10] Efficient classical simulation of the quantum Fourier transform
    Browne, Daniel E.
    [J]. NEW JOURNAL OF PHYSICS, 2007, 9