DNN-based Indoor Fingerprinting Localization with WiFi FTM

被引:9
作者
Eberechukwu, Paulson [1 ]
Park, Hyunwoo [1 ]
Laoudias, Christos [2 ]
Horsmanheimo, Seppo [3 ]
Kim, Sunwoo [1 ]
机构
[1] Hanyang Univ, Dept Elect Engn, Wireless Syst Lab, Seoul, South Korea
[2] Univ Cyprus, KIOS Res & Innovat Ctr Excellence, Nicosia, Cyprus
[3] VTT Tech Res Ctr Finland Ltd, Espoo, Finland
来源
2022 23RD IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2022) | 2022年
关键词
Indoor localization; FTM; Deep Learning; Fingerprinting;
D O I
10.1109/MDM55031.2022.00082
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we present a deep neural network (DNN)-based indoor fingerprinting localization method with WiFi fine time measurements (FTM). The proposed method leverages the WiFi FTM and its variance as environment features to provide accurate location estimation. An l-th layer DNN structure used in this paper is implemented by back propagation using an Adam optimizer. The weights and the bias of the l-th layer that minimize the loss function is computed in order to minimize the positioning mean squared error (MSE). Experimental results using real-world data obtained in a typical office setting proves the efficiency of the proposed solution. The performance of the system is remarkably improved, using the 600x600 hidden layer size of the DNN, we achieved an average positioning accuracy of 0.7m and 0.9m for the 68-th percentiles (1-sigma) and 95-th percentiles (2-sigma) respectively.
引用
收藏
页码:367 / 371
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 2006, LAN 1 IEEE INT C WIR
[2]   Wi-Fi RTT-Based Active Monopulse RADAR for Single Access Point Localization [J].
Antonio Lopez-Pastor, Jose ;
Arques-Lara, Pedro ;
Jose Franco-Penaranda, Juan ;
Javier Garcia-Sanchez, Antonio ;
Luis Gomez-Tornero, Jose .
IEEE ACCESS, 2021, 9 (09) :34755-34766
[3]  
Butt M. M., 2020, IEEE 91 VEH TECHNOL, P1
[4]   Indoor Smartphone Localization: A Hybrid WiFi RTT-RSS Ranging Approach [J].
Guo, Guangyi ;
Chen, Ruizhi ;
Ye, Feng ;
Peng, Xuesheng ;
Liu, Zuoya ;
Pan, Yuanjin .
IEEE ACCESS, 2019, 7 :176767-176781
[5]   WiNar: RTT-based Sub-meter Indoor Localization using Commercial Devices [J].
Hashem, Omar ;
Youssef, Moustafa ;
Harras, Khaled A. .
2020 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM 2020), 2020,
[6]   Indoor Localization with Wi-Fi Fine Timing Measurements Through Range Filtering and Fingerprinting Methods [J].
Huilla, Sami ;
Pepi, Chrysanthos ;
Antoniou, Michalis ;
Laoudias, Christos ;
Horsmanheimo, Seppo ;
Lembo, Sergio ;
Laukkanen, Matti ;
Ellinast, Georgios .
2020 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2020,
[7]  
I. C. S. L. S. Committee, 2016, 80211 IEEE
[8]   Verification: Accuracy Evaluation of WiFi Fine Time Measurements on an Open Platform [J].
Ibrahim, Mohamed ;
Liu, Hansi ;
Jawahar, Minitha ;
Viet Nguyen ;
Gruteser, Marco ;
Howard, Richard ;
Yu, Bo ;
Bai, Fan .
MOBICOM'18: PROCEEDINGS OF THE 24TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, 2018, :417-427
[9]   A Survey of Enabling Technologies for Network Localization, Tracking, and Navigation [J].
Laoudias, Christos ;
Moreira, Adriano ;
Kim, Sunwoo ;
Lee, Sangwoo ;
Wirola, Lauri ;
Fischione, Carlo .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2018, 20 (04) :3607-3644
[10]   Deep learning in neural networks: An overview [J].
Schmidhuber, Juergen .
NEURAL NETWORKS, 2015, 61 :85-117