Concavity of certain matrix trace functions

被引:0
作者
Hiai, F [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808577, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2001年 / 5卷 / 03期
关键词
matrices; trace; joint concavity; Pick function; tensor product; Hadamard product; operator mean;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate how Epstein's method using theory of Pick functions improves the existing results and also proves new ones on the joint concavity of trace functions of the form Tr (F(A(1),..., A(k))), where F(A(1),..., A(k)) is a matrix-valued function of positive semidefinite matrices A(1),..., A(k).
引用
收藏
页码:535 / 554
页数:20
相关论文
共 10 条
[1]  
Ando T, 1998, MATH INEQUAL APPL, V1, P1
[2]   CONCAVITY OF CERTAIN MAPS ON POSITIVE DEFINITE MATRICES AND APPLICATIONS TO HADAMARD PRODUCTS [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 26 (AUG) :203-241
[3]  
[Anonymous], 1980, J OPERATOR THEORY
[4]  
[Anonymous], 1996, Matrix Analysis
[5]  
[Anonymous], 1999, DIFFERENTIAL OPERATO
[6]  
[Anonymous], 1986, COMPLETELY BOUNDED M
[7]   REMARKS ON 2 THEOREMS OF E LIEB [J].
EPSTEIN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (04) :317-325
[8]   MEANS OF POSITIVE LINEAR-OPERATORS [J].
KUBO, F ;
ANDO, T .
MATHEMATISCHE ANNALEN, 1980, 246 (03) :205-224
[9]   CONVEX TRACE FUNCTIONS AND WIGNER-YANASE-DYSON CONJECTURE [J].
LIEB, EH .
ADVANCES IN MATHEMATICS, 1973, 11 (03) :267-288
[10]  
Rudin W., 1974, FUNCTIONAL ANAL