Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1 process

被引:60
作者
Borodin, Alexei [2 ]
Ferrari, Patrik L. [1 ]
Praehofer, Michael [1 ]
机构
[1] Tech Univ Munich, D-8000 Munich, Germany
[2] CALTECH, Pasadena, CA 91125 USA
来源
INTERNATIONAL MATHEMATICS RESEARCH PAPERS | 2007年
关键词
D O I
10.1093/imrp/rpm002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the totally asymmetric simple exclusion process (TASEP) in discrete time with sequential update. The joint distribution of the positions of selected particles is expressed as a Fredholm determinant with a kernel defining a signed determinantal point process. We focus on periodic initial conditions where particles occupy dZ, d >= 2. In the proper large time scaling limit, the fluctuations of particle positions are described by the Airy(1) process. Interpreted as a growth model, this confirms universality of fluctuations with flat initial conditions for a discrete set of slopes.
引用
收藏
页数:47
相关论文
共 18 条
[1]  
[Anonymous], 1996, ARXIVMATHCA9602214
[2]   Eynard-Mehta theorem, schur process, and their pfaffian analogs [J].
Borodin, A ;
Rains, EM .
JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) :291-317
[3]  
Borodin A, 2006, ARXIVMATHPH0608056
[4]  
FERRARI P. L., 2004, THESIS TU MUNCHEN
[5]   Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process [J].
Ferrari, PL ;
Spohn, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (01) :1-44
[6]   A determinantal formula for the GOE Tracy-Widom distribution [J].
Ferrari, PL ;
Spohn, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (33) :L557-L561
[7]   Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues [J].
Ferrari, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 252 (1-3) :77-109
[8]   Shape fluctuations and random matrices [J].
Johansson, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (02) :437-476
[9]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[10]   Determinant solution for the totally asymmetric exclusion process with parallel update [J].
Povolotsky, A. M. ;
Priezzhev, V. B. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,