Jensen's inequality for g-expectation:: part 1

被引:39
作者
Chen, ZJ [1 ]
Kulperger, R
Jiang, L
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
[2] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/j.crma.2003.09.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Briand et al. (Electron. Comm. Probab. 5 (2000) 101-117) gave a counterexample and proposition to show that given g, g-expectations usually do not satisfy Jensen's inequality for most of convex functions. This yields a natural question, under which conditions on g, do g-expectations satisfy Jensen's inequality for convex functions? In this paper, we shall deal with this question in the case that g is convex and give a necessary and sufficient condition on g under which Jensen's inequality holds for convex functions. (C) 2003 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:725 / 730
页数:6
相关论文
共 6 条
[1]   A CONVERSE COMPARISON THEOREM FOR BSDES AND RELATED PROPERTIES OF g-EXPECTATION [J].
Briand, Philippe ;
Coquet, Francois ;
Hu, Ying ;
Memin, Jean ;
Peng, Shige .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 :101-117
[2]   A general downcrossing inequality for g-martingales [J].
Chen, ZJ ;
Peng, SG .
STATISTICS & PROBABILITY LETTERS, 2000, 46 (02) :169-175
[3]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[4]  
Peng S., 1997, Pitman research notes in mathematics series, V364, P141
[5]  
Peng SM, 2002, ACTA METALL SIN, V38, P119
[6]  
Yosida K., 1999, FUNCTIONAL ANAL