Step-Flow Kinetics Model for the Vapor Solid Solid Si Nanowires Growth

被引:27
作者
Cui, H. [1 ]
Lu, Y. Y. [1 ]
Yang, G. W. [1 ]
Chen, Y. M. [2 ]
Wang, C. X. [1 ]
机构
[1] Sun Yat Sen Zhongshan Univ, Sch Phys Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Zhongshan Univ, Dept Mech, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Si nanowires; vapor-solid-solid growth; step-flow growth; kinetic Model; LEDGE-FLOW; HETEROJUNCTIONS; MECHANISM; ABRUPTNESS; DIFFUSION;
D O I
10.1021/acs.nanolett.5b01442
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vapor-solid-solid (VSS) process has recently received continued attention as an alternative to grow Si nanowire. In comparison with common vapor-liquid-solid (VLS) growth with liquid catalyst, VSS growth can prevent the catalyst species from incorporating into nanowires with deep-level impurity, and achieve the compositionally abrupt interfaces by restraining the so-called reservoir effect. However, despite the huge advances in experimental observations with in situ electron microscopy, VSS growth still remains much less understood in theory. Here, we developed a general mass-transport-limited kinetic model to describe the VSS growth process of Si nanowires by considering three surface diffusion processes and a slow interface diffusion process, where the former determines the atoms supplies way, while the latter dominates the growth of nanowires. The present model is not only well consistent with the available experimental data of Si nanowire, but also gives a clear physical image for the successive side-to-side ledge flow VSS growth.
引用
收藏
页码:3640 / 3645
页数:6
相关论文
共 28 条
[1]   Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature [J].
Adhikari, Hemant ;
Marshall, Ann F. ;
Goldthorpe, Irene A. ;
Chidsey, Christopher E. D. ;
McIntyre, Paul C. .
ACS NANO, 2007, 1 (05) :415-422
[2]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[3]   From Crystalline Germanium-Silicon Axial Heterostructures to Silicon Nanowire-Nanotubes [J].
Ben-Ishai, Moshit ;
Patolsky, Fernando .
NANO LETTERS, 2012, 12 (03) :1121-1128
[4]   Few-electron quantum dots in nanowires [J].
Bjork, MT ;
Thelander, C ;
Hansen, AE ;
Jensen, LE ;
Larsson, MW ;
Wallenberg, LR ;
Samuelson, L .
NANO LETTERS, 2004, 4 (09) :1621-1625
[5]   Controlling the Growth of Si/Ge Nanowires and Heterojunctions Using Silver-Gold Alloy Catalysts [J].
Chou, Yi-Chia ;
Wen, Cheng-Yen ;
Reuter, Mark C. ;
Su, Dong ;
Stach, Eric A. ;
Ross, Frances M. .
ACS NANO, 2012, 6 (07) :6407-6415
[6]   Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid Si/Si1-xGex heterostructure nanowires [J].
Clark, Trevor E. ;
Nimmatoori, Pramod ;
Lew, Kok-Keong ;
Pan, Ling ;
Redwing, Joan M. ;
Dickey, Elizabeth C. .
NANO LETTERS, 2008, 8 (04) :1246-1252
[7]   Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires [J].
Dubrovskii, V. G. ;
Sibirev, N. V. ;
Cirlin, G. E. ;
Soshnikov, I. P. ;
Chen, W. H. ;
Larde, R. ;
Cadel, E. ;
Pareige, P. ;
Xu, T. ;
Grandidier, B. ;
Nys, J. -P. ;
Stievenard, D. ;
Moewe, M. ;
Chuang, L. C. ;
Chang-Hasnain, C. .
PHYSICAL REVIEW B, 2009, 79 (20)
[8]   Step-flow growth of a nanowire in the vapor-liquid-solid and vapor-solid-solid processes [J].
Golovin, A. A. ;
Davis, S. H. ;
Voorhees, P. W. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (07)
[9]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620
[10]   Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth -: art. no. 203101 [J].
Harmand, JC ;
Patriarche, G ;
Péré-Laperne, N ;
Mérat-Combes, MN ;
Travers, L ;
Glas, F .
APPLIED PHYSICS LETTERS, 2005, 87 (20) :1-3