Global existence and asymptotic behavior of solutions for a hyperbolic-parabolic model of chemotaxis on network

被引:0
作者
Li, Yafeng [1 ]
Mu, Chunlai [1 ]
Xin, Qiao [2 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Yili Normal Univ, Coll Math & Stat, Yining 835000, Peoples R China
关键词
asymptotic behavior; chemotaxis; hyperbolic-parabolic; network; transmission condition; SCAFFOLDS; SYSTEM;
D O I
10.1002/mma.8204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a hyperbolic-parabolic system on a network. The global existence of solution to this problem with suitable the transmission conditions at interior is obtained by energy estimates. Moreover, for the case of acyclic network, we prove the existence and uniqueness of stationary solution to the system and show that the stationary solution provides asymptotic profiles for a class of global solutions.
引用
收藏
页码:6739 / 6765
页数:27
相关论文
共 50 条
[41]   Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis-haptotaxis [J].
Pang, Peter Y. H. ;
Wang, Yifu .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (07) :1387-1412
[42]   Global boundedness and asymptotic behavior in a fully parabolic attraction-repulsion chemotaxis model with logistic source [J].
Liu, Chao ;
Liu, Bin .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2023,
[43]   Existence and asymptotic behavior of solutions for quasilinear parabolic systems [J].
Tian, Canrong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (13) :1713-1725
[44]   EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A SINGULAR PARABOLIC EQUATION [J].
Xia Li ;
Li Jingna ;
Yao Zheng'an .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (05) :1875-1882
[45]   EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A SINGULAR PARABOLIC EQUATION [J].
夏莉 ;
李敬娜 ;
姚正安 .
ActaMathematicaScientia, 2012, 32 (05) :1875-1882
[46]   Global existence and asymptotic stability in a predator-prey chemotaxis model [J].
Fu, Shengmao ;
Miao, Liangying .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 54
[47]   On the global existence and time-decay rates for a parabolic-hyperbolic model arising from chemotaxis [J].
Xu, Fuyi ;
Li, Xinliang .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (03)
[48]   Global Existence and Boundedness of Solutions to a Model of Chemotaxis [J].
Dyson, J. ;
Villella-Bressan, R. ;
Webb, G. F. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2008, 3 (07) :17-35
[49]   Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis [J].
Fan, Jishan ;
Zhao, Kun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :687-695
[50]   NONLINEAR STABILITY OF TRAVELING WAVES TO A HYPERBOLIC-PARABOLIC SYSTEM MODELING CHEMOTAXIS [J].
Li, Tong ;
Wang, Zhi-An .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (05) :1522-1541