Global existence and asymptotic behavior of solutions for a hyperbolic-parabolic model of chemotaxis on network

被引:0
作者
Li, Yafeng [1 ]
Mu, Chunlai [1 ]
Xin, Qiao [2 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Yili Normal Univ, Coll Math & Stat, Yining 835000, Peoples R China
关键词
asymptotic behavior; chemotaxis; hyperbolic-parabolic; network; transmission condition; SCAFFOLDS; SYSTEM;
D O I
10.1002/mma.8204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a hyperbolic-parabolic system on a network. The global existence of solution to this problem with suitable the transmission conditions at interior is obtained by energy estimates. Moreover, for the case of acyclic network, we prove the existence and uniqueness of stationary solution to the system and show that the stationary solution provides asymptotic profiles for a class of global solutions.
引用
收藏
页码:6739 / 6765
页数:27
相关论文
共 50 条
[31]   GLOBAL SOLUTIONS TO A HYPERBOLIC-PARABOLIC COUPLED SYSTEM WITH LARGE INITIAL DATA [J].
Guo Jun ;
Xiao Jixiong ;
Zhao Huijiang ;
Zhu Changjiang .
ACTA MATHEMATICA SCIENTIA, 2009, 29 (03) :629-641
[32]   THE HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM FOR VASCULOGENESIS: GLOBAL DYNAMICS AND RELAXATION LIMIT TOWARD A KELLER-SEGEL MODEL [J].
Crin-Barat, Timothee ;
He, Qingyo ;
Shou, Ling-yun .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) :4445-4492
[33]   On existence of solutions for some hyperbolic-parabolic-type chemotaxis systems [J].
Chen, Hua ;
Wu, Shaohua .
IMA JOURNAL OF APPLIED MATHEMATICS, 2007, 72 (03) :331-347
[34]   Global existence and asymptotic behavior of solutions for nonlinear parabolic equations on unbounded domains [J].
Mâatoug, L ;
Riahi, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (02) :583-618
[35]   Global existence and asymptotic behavior of solutions to a semilinear parabolic equation on Carnot groups [J].
Yuan, Zixia .
BOUNDARY VALUE PROBLEMS, 2015,
[36]   Global existence and asymptotic behavior of solutions to a semilinear parabolic equation on Carnot groups [J].
Zixia Yuan .
Boundary Value Problems, 2015
[37]   Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis [J].
Liu, Qingqing ;
Peng, Hongyun ;
Wang, Zhi-An .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 :251-286
[38]   Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system [J].
Mu, Chunlai ;
Wang, Liangchen ;
Zheng, Pan ;
Zhang, Qingna .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) :1634-1642
[39]   Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation [J].
Nakaguchi, E. ;
Osaki, K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) :286-297
[40]   Global solutions for quasi-linear hyperbolic-parabolic coupled systems of thermoviscoelasticity [J].
Dharmawardane, P. M. N. ;
Kawashima, S. ;
Shibata, Y. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 405 :76-102