Global existence and asymptotic behavior of solutions for a hyperbolic-parabolic model of chemotaxis on network

被引:0
作者
Li, Yafeng [1 ]
Mu, Chunlai [1 ]
Xin, Qiao [2 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Yili Normal Univ, Coll Math & Stat, Yining 835000, Peoples R China
关键词
asymptotic behavior; chemotaxis; hyperbolic-parabolic; network; transmission condition; SCAFFOLDS; SYSTEM;
D O I
10.1002/mma.8204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a hyperbolic-parabolic system on a network. The global existence of solution to this problem with suitable the transmission conditions at interior is obtained by energy estimates. Moreover, for the case of acyclic network, we prove the existence and uniqueness of stationary solution to the system and show that the stationary solution provides asymptotic profiles for a class of global solutions.
引用
收藏
页码:6739 / 6765
页数:27
相关论文
共 50 条
[11]   STATIONARY SOLUTIONS AND ASYMPTOTIC BEHAVIOUR FOR A CHEMOTAXIS HYPERBOLIC MODEL ON A NETWORK [J].
Guarguaglini, Francesca R. .
NETWORKS AND HETEROGENEOUS MEDIA, 2018, 13 (01) :47-67
[12]   GLOBAL SMOOTH SOLUTIONS FOR A HYPERBOLIC CHEMOTAXIS MODEL ON A NETWORK [J].
Guarguaglini, F. R. ;
Natalini, R. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (06) :4652-4671
[13]   Global existence of classical solutionsfor a hyperbolic chemotaxis model and its parabolic limit [J].
Hwang, HJ ;
Kang, K ;
Stevens, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (01) :289-316
[14]   Local and global solutions for a hyperbolic-elliptic model of chemotaxis on a network [J].
Guarguaglini, Francesca Romana ;
Papi, Marco ;
Smarrazzo, Flavia .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (08) :1465-1509
[15]   Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on RN [J].
Salako, Rachidi Bolaji ;
Shen, Wenxian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (11) :5635-5690
[16]   Global analysis of smooth solutions to a hyperbolic-parabolic coupled system [J].
Zhang, Yinghui ;
Deng, Haiying ;
Sun, Mingbao .
FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (06) :1437-1460
[17]   Existence of viscous shock wave of a generalized hyperbolic-parabolic system arising from chemotaxis [J].
Zhu, Yingjie ;
Cong, Fuzhong ;
Gao, Haiyin ;
Kang, Yali .
2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, :1388-1391
[18]   LARGE TIME BEHAVIOR OF A HYPERBOLIC-PARABOLIC MODEL OF VASCULOGENESIS [J].
Liu, M. E. N. G. Q. I. A. N. ;
Wu, Z. H. I. G. A. N. G. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (02) :777-795
[19]   Global Existence and Asymptotic Behavior of Solutions for Some Nonlinear Hyperbolic Equation [J].
Yaojun Ye .
Journal of Inequalities and Applications, 2010
[20]   Global asymptotic behavior of solutions for a parabolic -parabolic -ODE chemotaxis system modeling multiple sclerosis [J].
Hu, Xiaoli ;
Fu, Shengmao ;
Ai, Shangbing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) :6875-6898