Neuroendocrine Coordination of Mitochondrial Stress Signaling and Proteostasis

被引:191
作者
Berendzen, Kristen M. [1 ]
Durieux, Jenni [1 ]
Shao, Li-Wa [2 ]
Tian, Ye [1 ]
Kim, Hyun-eui [1 ]
Wolff, Suzanne [1 ]
Liu, Ying [2 ]
Dillin, Andrew [1 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Glenn Ctr Aging Res, Berkeley, CA 94720 USA
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Peking Tsinghua Ctr Life Sci, Inst Mol Med, Beijing 100871, Peoples R China
关键词
CAENORHABDITIS-ELEGANS; HUNTINGTONS-DISEASE; C-ELEGANS; NEURODEGENERATIVE DISORDERS; ENERGY-METABOLISM; GENE-EXPRESSION; UNC-31; CAPS; IN-VIVO; SEROTONIN; LONGEVITY;
D O I
10.1016/j.cell.2016.08.042
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During neurodegenerative disease, the toxic accumulation of aggregates and misfolded proteins is often accompanied with widespread changes in peripheral metabolism, even in cells in which the aggregating protein is not present. The mechanism by which the central nervous system elicits a distal reaction to proteotoxic stress remains unknown. We hypothesized that the endocrine communication of neuronal stress plays a causative role in the changes in mitochondrial homeostasis associated with proteotoxic disease states. We find that an aggregation-prone protein expressed in the neurons of C. elegans binds to mitochondria, eliciting a global induction of a mitochondrial-specific unfolded protein response (UPR mt), affecting whole-animal physiology. Importantly, dense core vesicle release and secretion of the neurotransmitter serotonin is required for the signal's propagation. Collectively, these data suggest the commandeering of a nutrient sensing network to allow for cell-to-cell communication between mitochondria in response to protein folding stress in the nervous system.
引用
收藏
页码:1553 / +
页数:21
相关论文
共 55 条
[1]   Regulation of C-elegans longevity by specific gustatory and olfactory neurons [J].
Alcedo, J ;
Kenyon, C .
NEURON, 2004, 41 (01) :45-55
[2]   Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system [J].
Alkema, MJ ;
Hunter-Ensor, M ;
Ringstad, N ;
Horvitz, HR .
NEURON, 2005, 46 (02) :247-260
[3]   Protective Coupling of Mitochondrial Function and Protein Synthesis via the eIF2α Kinase GCN-2 [J].
Baker, Brooke M. ;
Nargund, Amrita M. ;
Sun, Tiffany ;
Haynes, Cole M. .
PLOS GENETICS, 2012, 8 (06)
[4]  
BRENNER S, 1974, GENETICS, V77, P71
[5]   Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model [J].
Brignull, Heather R. ;
Moore, Finola E. ;
Tang, Stephanie J. ;
Morimoto, Richard I. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (29) :7597-7606
[6]   Metabolic Dysfunction in Alzheimer's Disease and Related Neurodegenerative Disorders [J].
Cai, Huan ;
Cong, Wei-na ;
Ji, Sunggoan ;
Rothman, Sarah ;
Maudsley, Stuart ;
Martin, Bronwen .
CURRENT ALZHEIMER RESEARCH, 2012, 9 (01) :5-17
[7]   The Kynurenine Pathway Modulates Neurodegeneration in a Drosophila Model of Huntington's Disease [J].
Campesan, Susanna ;
Green, Edward W. ;
Breda, Carlo ;
Sathyasaikumar, Korrapati V. ;
Muchowski, Paul J. ;
Schwarcz, Robert ;
Kyriacou, Charalambos P. ;
Giorgini, Flaviano .
CURRENT BIOLOGY, 2011, 21 (11) :961-966
[8]   Presynaptic UNC-31 (CAPS) is required to activate the Gαs pathway of the Caenorhabditis elegans synaptic signaling network [J].
Charlie, NK ;
Schade, MA ;
Thomure, AM ;
Miller, KG .
GENETICS, 2006, 172 (02) :943-961
[9]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[10]   Shaping the role of mitochondria in the pathogenesis of Huntington's disease [J].
Costa, Veronica ;
Scorrano, Luca .
EMBO JOURNAL, 2012, 31 (08) :1853-1864