On-board hyperspectral compression and analysis system for the NEMO satellite

被引:1
作者
Bowles, J [1 ]
Antoniades, J [1 ]
Skibo, J [1 ]
Daniel, M [1 ]
Haas, D [1 ]
Grossmann, J [1 ]
Baumback, M [1 ]
机构
[1] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA
来源
INFRARED SPACEBORNE REMOTE SENSING VI | 1998年 / 3437卷
关键词
hyperspectral; real-time processing; data compression; visible; infrared; remote sensing; satellite;
D O I
10.1117/12.331330
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The primary mission of the Naval EarthMap Observer (NEMO) is to demonstrate the importance of hyperspectral imagery in characterizing the littoral battlespace environment and littoral model development. NEMO will demonstrate real time on-board processing and compression of hyperspectral data with real-time tactical downlink of ocean and surveillance products directly from the spacecraft to the field. The NRL's Optical Real-time Adaptive Spectral Identification System (ORASIS) will be deployed on a 3.8 Gflop multiprocessing computer, the Imagery On-Board Processor (IOBP), for automated data analysis, feature extraction and compression. NEMO's wide area coverage (10(6) km(2) imaged per day), as well as power and cost constraints require data compression between 10:1 and 20:1. The NEMO Sensor Imaging Payload (SIP) consists of two primary sensors: first, the Coastal Ocean Imaging Spectrograph (COIS) is a hyperspectral imager which records 60 spectral bands in the VNIR (400 to 1000 nm) and 150 bands in the SWIR (1000 to 2500 nm), with a GSD of either 30 or 60 meters; and second, the 5 m GSD Panchromatic Imaging Camera (PIC). This paper describes the design and implementation of the data processing hardware and software for the NEMO satellite.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 50 条
[41]   The Φ-Sat-1 Mission: The First On-Board Deep Neural Network Demonstrator for Satellite Earth Observation [J].
Giuffrida, Gianluca ;
Fanucci, Luca ;
Meoni, Gabriele ;
Batic, Matej ;
Buckley, Leonie ;
Dunne, Aubrey ;
van Dijk, Chris ;
Esposito, Marco ;
Hefele, John ;
Vercruyssen, Nathan ;
Furano, Gianluca ;
Pastena, Massimiliano ;
Aschbacher, Josef .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[42]   The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system [J].
Best, FA ;
Revercomb, HE ;
Knuteson, RO ;
Tobin, DC ;
Ellington, SD ;
Werner, MW ;
Adler, DP ;
Garcia, RK ;
Taylor, JK ;
Ciganovich, NN ;
Smith, WL ;
Bingham, GE ;
Elwell, JD ;
Scott, DK .
MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS II, 2005, 5655 :77-87
[43]   An FPGA-based demonstration hyperspectral image compression system [J].
Woolston, Tom L. ;
Bingham, Gail E. ;
Holt, Niel S. ;
Wada, Glen .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIV, 2008, 6966
[44]   Hyperspectral data compression based upon the principal component analysis [J].
Minkin, A. S. ;
Nikolaeva, O., V ;
Russkov, A. A. .
COMPUTER OPTICS, 2021, 45 (02) :235-+
[45]   Reduced-Complexity End-to-End Variational Autoencoder for on Board Satellite Image Compression [J].
Alves de Oliveira, Vinicius ;
Chabert, Marie ;
Oberlin, Thomas ;
Poulliat, Charly ;
Bruno, Mickael ;
Latry, Christophe ;
Carlavan, Mikael ;
Henrot, Simon ;
Falzon, Frederic ;
Camarero, Roberto .
REMOTE SENSING, 2021, 13 (03) :1-27
[46]   Expandable On-Board Real-Time Edge Computing Architecture for Luojia3 Intelligent Remote Sensing Satellite [J].
Zhang, Zhiqi ;
Qu, Zhuo ;
Liu, Siyuan ;
Li, Dehua ;
Cao, Jinshan ;
Xie, Guangqi .
REMOTE SENSING, 2022, 14 (15)
[47]   Real-Time On-board Satellite Cloud Cover Detection Hardware Architecture using Spaceborne Remote Sensing Imagery [J].
Vitolo, Paola ;
Fasolino, Andrea ;
Liguori, Rosalba ;
Di Benedetto, Luigi ;
Rubino, Alfredo ;
Licciardo, Gian Domenico .
REAL-TIME PROCESSING OF IMAGE, DEPTH, AND VIDEO INFORMATION 2024, 2024, 13000
[48]   Interference and noise adjusted principal components analysis for hyperspectral image compression [J].
Du, Q .
CHEMICAL AND BIOLOGICAL STANDOFF DETECTION II, 2004, 5584 :186-193
[49]   Work-in-Progress: Real-Time On-board Processing for Cloud Detection in FACSAT-2 Multispectral Satellite Imagery [J].
Mendez Gomez, Javier E. ;
Cheng, Albert M. K. .
2022 IEEE 43RD REAL-TIME SYSTEMS SYMPOSIUM (RTSS 2022), 2022, :499-502
[50]   On-Orbit Radiometric Calibration of Hyperspectral Sensors on Board Micro-Nano Satellite Constellation Based on RadCalNet Data [J].
Zhang, Qiang ;
Zhao, Yongguang ;
Zhang, Lei ;
Wu, Jiaqi ;
Li, Wan ;
Yan, Jun ;
Jiang, Xiaohua ;
Yan, Zhiyu ;
Zhao, Jing .
REMOTE SENSING, 2022, 14 (19)