A quasi-static contact problem in thermoviscoelastic diffusion theory

被引:12
|
作者
Copetti, M. I. M. [1 ]
Aouadi, M. [2 ]
机构
[1] Univ Fed Santa Maria, Dept Matemat, Lab Anal Numer & Astrofis, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Carthage, Ecole Natl Ingenieurs Bizerte, BP66,Campus Univ, Menzel Abderrahman 7035, Tunisia
关键词
Thermoviscoelastic; Diffusion; Contact; Existence; Exponential stability; Numerical analysis; THERMOELASTIC DIFFUSION; DYNAMIC CONTACT;
D O I
10.1016/j.apnum.2016.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of thermoviscoelastic quasi-static contact between a rod and a rigid obstacle, when the diffusion effect is taken into account, is modeled and analyzed. The contact is modeled by the Signorini's condition and the stress strain constitutive equation is of the Kelvin-Voigt type. In the quasi-static case, the governing equations correspond to the coupling of an elliptic and two parabolic equations. It poses some new mathematical difficulties due to the nonlinear boundary conditions. The existence of solutions is proved as the limit of solutions to a penalized problem. Moreover, we show that the weak solution converges to zero exponentially as time goes to infinity. Finally, we give some computational results where the influence of diffusion and viscosity are illustrated in contact. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 183
页数:27
相关论文
共 50 条
  • [11] Dynamic and quasi-static instability of sliding thermoelastic frictional contact
    V. B. Zelentsov
    B. I. Mitrin
    S. M. Aizikovich
    Journal of Friction and Wear, 2016, 37 : 213 - 220
  • [12] Dynamic and quasi-static instability of sliding thermoelastic frictional contact
    Zelentsov, V. B.
    Mitrin, B. I.
    Aizikovich, S. M.
    JOURNAL OF FRICTION AND WEAR, 2016, 37 (03) : 213 - 220
  • [13] Dynamic thermoviscoelastic thermistor problem with contact and nonmonotone friction
    Bartosz, Krzysztof
    Janiczko, Tomasz
    Szafraniec, Pawel
    Shillor, Meir
    APPLICABLE ANALYSIS, 2018, 97 (08) : 1432 - 1453
  • [14] A contact problem of a thermoelastic diffusion rod
    Aouadi, Moncef
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 278 - 286
  • [15] A type III porous-thermo-elastic problem with quasi-static microvoids
    Bazarra, Noelia
    Castejon, Alberto
    Fernandez, Jose R.
    Quintanilla, Ramon
    MECCANICA, 2021, 56 (12) : 3025 - 3037
  • [16] Coulomb frictional contact by explicit projection in the cone for finite displacement quasi-static problems
    Areias, P.
    Rabczuk, T.
    Queirs de Melo, F. J. M.
    Cesar de Sa, J.
    COMPUTATIONAL MECHANICS, 2015, 55 (01) : 57 - 72
  • [17] Coulomb frictional contact by explicit projection in the cone for finite displacement quasi-static problems
    P. Areias
    T. Rabczuk
    F. J. M. Queirós de Melo
    J. César de Sá
    Computational Mechanics, 2015, 55 : 57 - 72
  • [18] Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law
    Bartosz, Krzysztof
    Danan, David
    Szafraniec, Pawel
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (05) : 727 - 746
  • [19] Comparison between quasi-static and multibody dynamic simulations for wheel-rail contact analysis
    Pacheco, P. A. P.
    Ramos, P. G.
    Sa, T. L.
    Santos, G. F. M.
    Gay Neto, A.
    Santos, A. A.
    MULTIBODY SYSTEM DYNAMICS, 2025, 63 (1-2) : 63 - 81
  • [20] Influence of auxetic foam in quasi-static axial crushing
    Mohsenizadeh, Saeid
    Alipour, Roozbeh
    Ahmad, Zaini
    Alias, Amran
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2016, 107 (10) : 916 - 924