Symmetries and scaling in generalised coupled conserved Kardar-Parisi-Zhang equations

被引:4
|
作者
Banerjee, Tirthankar [1 ]
Basu, Abhik [1 ]
机构
[1] Saha Inst Nucl Phys, Condensed Matter Phys Div, Kolkata 700064, W Bengal, India
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2018年
关键词
correlation functions; driven diffusive systems; renormalisation group; RENORMALIZATION; DYNAMICS; TURBULENCE;
D O I
10.1088/1742-5468/aa9a58
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the noisy nonequilibrium dynamics of a conserved density that is driven by a fluctuating surface governed by the conserved Kardar-Parisi-Zhang equation. We uncover the universal scaling properties of the conserved density. We consider two separate minimal models where the surface fluctuations couple (i) with the spatial variation of the conserved density, and (ii) directly with the magnitude of the conserved density. Both these two models conserve the density, but differ from a symmetry stand point. We use our result to highlight the dependence of nonequilibrium universality classes on the interplay between symmetries and conservation laws.
引用
收藏
页数:18
相关论文
共 43 条
  • [11] Minimum action method for the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    Ren, Weiqing
    PHYSICAL REVIEW E, 2009, 80 (04)
  • [12] Large Deviations of Surface Height in the Kardar-Parisi-Zhang Equation
    Meerson, Baruch
    Katzav, Eytan
    Vilenkin, Arkady
    PHYSICAL REVIEW LETTERS, 2016, 116 (07)
  • [13] From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators
    Lauter, Roland
    Mitra, Aditi
    Marquardt, Florian
    PHYSICAL REVIEW E, 2017, 96 (01)
  • [14] Logarithmic or algebraic: Roughening of an active Kardar-Parisi-Zhang surface
    Jana, Debayan
    Haldar, Astik
    Basu, Abhik
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [15] Kardar-Parisi-Zhang equation with short-range correlated noise: Emergent symmetries and nonuniversal observables
    Mathey, Steven
    Agoritsas, Elisabeth
    Kloss, Thomas
    Lecomte, Vivien
    Canet, Leonie
    PHYSICAL REVIEW E, 2017, 95 (03)
  • [16] Conformal invariance of loop ensembles under Kardar-Parisi-Zhang dynamics
    Cao, Xiangyu
    Rosso, Alberto
    Santachiara, Raoul
    EPL, 2015, 111 (01)
  • [17] Universal properties of the Kardar-Parisi-Zhang equation with quenched columnar disorders
    Haldar, Astik
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [18] Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model
    Odor, Geza
    Kelling, Jeffrey
    Gemming, Sibylle
    PHYSICAL REVIEW E, 2014, 89 (03)
  • [19] Recent developments on the Kardar-Parisi-Zhang surface-growth equation
    Wio, Horacio S.
    Escudero, Carlos
    Revelli, Jorge A.
    Deza, Roberto R.
    de la Lama, Marta S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1935): : 396 - 411
  • [20] Kardar-Parisi-Zhang universality class in (d+1)-dimensions
    Oliveira, Tiago J.
    PHYSICAL REVIEW E, 2022, 106 (06)