Symmetries and scaling in generalised coupled conserved Kardar-Parisi-Zhang equations

被引:4
|
作者
Banerjee, Tirthankar [1 ]
Basu, Abhik [1 ]
机构
[1] Saha Inst Nucl Phys, Condensed Matter Phys Div, Kolkata 700064, W Bengal, India
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2018年
关键词
correlation functions; driven diffusive systems; renormalisation group; RENORMALIZATION; DYNAMICS; TURBULENCE;
D O I
10.1088/1742-5468/aa9a58
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the noisy nonequilibrium dynamics of a conserved density that is driven by a fluctuating surface governed by the conserved Kardar-Parisi-Zhang equation. We uncover the universal scaling properties of the conserved density. We consider two separate minimal models where the surface fluctuations couple (i) with the spatial variation of the conserved density, and (ii) directly with the magnitude of the conserved density. Both these two models conserve the density, but differ from a symmetry stand point. We use our result to highlight the dependence of nonequilibrium universality classes on the interplay between symmetries and conservation laws.
引用
收藏
页数:18
相关论文
共 43 条
  • [1] Coupled Kardar-Parisi-Zhang Equations in One Dimension
    Ferrari, Patrik L.
    Sasamoto, Tomohiro
    Spohn, Herbert
    JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (03) : 377 - 399
  • [2] Effects of memory on scaling behaviour of Kardar-Parisi-Zhang equation
    Tang Gang
    Hao Da-Peng
    Xia Hui
    Han Kui
    Xun Zhi-Peng
    CHINESE PHYSICS B, 2010, 19 (10)
  • [3] Unpredicted Scaling of the One-Dimensional Kardar-Parisi-Zhang Equation
    Fontaine, Come
    Vercesi, Francesco
    Brachet, Marc
    Canet, Leonie
    PHYSICAL REVIEW LETTERS, 2023, 131 (24)
  • [4] Sinc noise for the Kardar-Parisi-Zhang equation
    Niggemann, Oliver
    Hinrichsen, Haye
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [5] Characteristic Sign Renewals of Kardar-Parisi-Zhang Fluctuations
    Takeuchi, Kazumasa A.
    Akimoto, Takuma
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (05) : 1167 - 1182
  • [6] Emergent Kardar-Parisi-Zhang Phase in Quadratically Driven Condensates
    Diessel, Oriana K.
    Diehl, Sebastian
    Chiocchetta, Alessio
    PHYSICAL REVIEW LETTERS, 2022, 128 (07)
  • [7] Dimensional fragility of the Kardar-Parisi-Zhang universality class
    Nicoli, Matteo
    Cuerno, Rodolfo
    Castro, Mario
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [8] Efimov effect at the Kardar-Parisi-Zhang roughening transition
    Nakayama, Yu
    Nishida, Yusuke
    PHYSICAL REVIEW E, 2021, 103 (01)
  • [9] From noise on the sites to noise on the links: Discretizing the conserved Kardar-Parisi-Zhang equation in real space
    Cavagna, Andrea
    Cristin, Javier
    Giardina, Irene
    Veca, Mario
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [10] Upper critical dimension of the Kardar-Parisi-Zhang equation
    Schwartz, Moshe
    Perlsman, Ehud
    PHYSICAL REVIEW E, 2012, 85 (05):