Fabrication of a highly sensitive surface-enhanced Raman scattering substrate for monitoring the catalytic degradation of organic pollutants

被引:47
作者
Song, Wei [1 ,2 ]
Ji, Wei [1 ]
Vantasin, Sanpon [1 ]
Tanabe, Ichiro [1 ]
Zhao, Bing [2 ]
Ozaki, Yukihiro [1 ]
机构
[1] Kwansei Gakuin Univ, Sch Sci & Technol, Sanda, Hyogo 6601337, Japan
[2] Jilin Univ, State Key Lab Supramol Struct & Mat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
SINGLE-MOLECULE DETECTION; QUANTUM DOTS; SILVER NANOPARTICLES; SERS; SPECTROSCOPY; REDUCTION; PYRIDINE; ADSORPTION; GRAPHENE; SPECTRA;
D O I
10.1039/c5ta01974e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we demonstrate a simple and reliable two-step strategy based on an electrospinning technique combined with in situ calcination for the fabrication of ZnO nanofibers deposited on a silver foil surface. These nanofibers are used as a novel sensitive surface-enhanced Raman scattering (SERS) substrate. The strong interactions between ZnO nanofibers and silver foil afford continuous delocalized surface plasmons, resulting in localization of the electric field at the gap between the ZnO nanofibers and silver foil; thus, the exciton-plasmon interactions between ZnO nanofibers and the silver foil surface contribute to the enhanced scattering, generating a large electromagnetic field enhancement. In addition, the ZnO nanofibers deposited on the silver foil surface exhibit enhanced photocatalytic activity toward the degradation of organic pollutants because of the charge separation effect and increase in the lifetime of the photogenerated excitons under ultraviolet light irradiation; thus, this new substrate can be used as a SERS substrate for determining the catalytic activity and reaction kinetics during the photodegradation of organic pollutants.
引用
收藏
页码:13556 / 13562
页数:7
相关论文
共 50 条
  • [41] Stealth Surface Modification of Surface-Enhanced Raman Scattering Substrates for Sensitive and Accurate Detection in Protein Solutions
    Sun, Fang
    Ella-Menye, Jean-Rene
    Galvan, Daniel David
    Bai, Tao
    Hung, Hsiang-Chieh
    Chou, Ying-Nien
    Zhang, Peng
    Jiang, Shaoyi
    Yu, Qiuming
    ACS NANO, 2015, 9 (03) : 2668 - 2676
  • [42] Design and construction of a sensitive silver substrate for surface-enhanced Raman scattering spectroscopy
    Xia, Lixin
    Wang, Jian
    Tong, Shengrui
    Liu, Guangye
    Li, Jushi
    Zhang, Huili
    VIBRATIONAL SPECTROSCOPY, 2008, 47 (02) : 124 - 128
  • [43] Metal-Organic Semiconductor Nanostructures for Surface-Enhanced Raman Scattering
    Alessio, Priscila
    De Saja Saez, J. A.
    Aroca, Ricardo F.
    Constantino, Carlos J. L.
    APPLIED SPECTROSCOPY, 2011, 65 (02) : 152 - 158
  • [44] Influence of droplet drying configuration on surface-enhanced Raman scattering performance
    Avci, Ertug
    Culha, Mustafa
    RSC ADVANCES, 2013, 3 (39): : 17829 - 17836
  • [45] Nanoclustered Gold Honeycombs for Surface-Enhanced Raman Scattering
    Leng, Weinan
    Vikesland, Peter J.
    ANALYTICAL CHEMISTRY, 2013, 85 (03) : 1342 - 1349
  • [46] Surface-enhanced Raman scattering for biosensing platforms: a review
    Lo Faro, M. J.
    Leonardi, A. A.
    Morganti, D.
    Sciuto, E. L.
    Irrera, A.
    Fazio, B.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2022, 177 (11-12): : 1209 - 1221
  • [47] Surface-enhanced Raman scattering II: concluding remarks
    Porter, Marc D.
    Granger, Jennifer H.
    FARADAY DISCUSSIONS, 2017, 205 : 601 - 613
  • [48] Surface-enhanced Raman scattering: facts and inline trends
    Hossain, Mohammad Kamal
    Ozaki, Yukihiro
    CURRENT SCIENCE, 2009, 97 (02): : 192 - 201
  • [49] Individual nanostructured materials: fabrication and surface-enhanced Raman scattering
    Gong, Xiao
    Bao, Ying
    Qiu, Chao
    Jiang, Chaoyang
    CHEMICAL COMMUNICATIONS, 2012, 48 (56) : 7003 - 7018
  • [50] Fabrication of a Macroporous Microwell Array for Surface-Enhanced Raman Scattering
    Zamuner, Martina
    Talaga, David
    Deiss, Frederique
    Guieu, Valerie
    Kuhn, Alexander
    Ugo, Paolo
    Sojic, Neso
    ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (19) : 3129 - 3135