Optimization of efficient monolithic perovskite/silicon tandem solar cell

被引:8
作者
Afrasiab [1 ]
Khan, Aimal Daud [2 ,3 ,4 ,5 ]
Subhan, Fazal E. [1 ]
Khan, Adnan Daud [1 ]
Khan, Sultan Daud [5 ]
Ahmad, Muhammad Shakeel [6 ]
Rehan, Muhammad Saad [1 ]
Noman, Muhammad [1 ]
机构
[1] Univ Engn & Technol, US Pakistan Ctr Adv Studies Energy, Peshawar 25000, Pakistan
[2] Soochow Univ, Coll Energy, Soochow Inst Energy & Mat Innovat SIEMIS, Suzhou 215006, Peoples R China
[3] Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
[4] Minist Educ, Key Lab Modern Opt Technol, Suzhou 215006, Peoples R China
[5] Natl Univ Technol, Dept Comp Sci, Islamabad 46000, Pakistan
[6] Univ Malaya, UM Power Energy Dedicated Adv Ctr UMPEDAC, Higher Inst Ctr Excellence HICoE, Wisma R&D, Level 4,JalanPantai Baharu, Kuala Lumpur 59990, Malaysia
来源
OPTIK | 2020年 / 208卷
关键词
Perovskite; Bandgap; Efficiency; Temperature; TRIHALIDE;
D O I
10.1016/j.ijleo.2020.164573
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Solar cells based on multi-junctions are considered to be the most efficient way of improving the cell's sunlight to electrical energy conversion efficiency. In this paper, we simulated monolithic tandem solar cell comprised of high and low bandgap materials i.e., perovskite/silicon layers, separated by a recombination layer made of Spiro-MeOTAD/Silicon, a window layer formed from zinc oxide (ZnO), a buffer layer formed from cadmium sulfide (CdS), and a heavily doped back surface field layer made of n(++)Si to stop the recombination at the back surface. The stated structure is investigated numerically and optimized for different parameters, which include bandgap, thickness of active layers, and dopant concentration. The obtained photovoltaic parameters are: open circuit voltage (V-oc) = 1.779V, short circuit current density (J(sc)) = 20.19 mA/cm(2), fill factor (FF) = 82.22 %, and efficiency (eta) = 28.50 %, respectively. Additionally, we tested the optimized solar cell design for high temperatures, and it turned out that temperature had very little effect on the cell, showing superior performance than conventional multi-junction structures.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell
    Liu, Jiang
    Aydin, Erkan
    Yin, Jun
    De Bastiani, Michele
    Isikgor, Furkan H.
    Rehman, Atteq Ur
    Yengel, Emre
    Ugur, Esma
    Harrison, George T.
    Wang, Mingcong
    Gao, Yajun
    Khan, Jafar Iqbal
    Babics, Maxime
    Allen, Thomas G.
    Subbiah, Anand S.
    Zhu, Kaichen
    Zheng, Xiaopeng
    Yan, Wenbo
    Xu, Fuzong
    Salvador, Michael F.
    Bakr, Osman M.
    Anthopoulos, Thomas D.
    Lanza, Mario
    Mohammed, Omar F.
    Laquai, Frederic
    De Wolf, Stefaan
    JOULE, 2021, 5 (12) : 3169 - 3186
  • [22] Maximizing Current Density in Monolithic Perovskite Silicon Tandem Solar Cells
    Heydarian, Minasadat
    Messmer, Christoph
    Bett, Alexander J.
    Heydarian, Maryamsadat
    Chojniak, David
    Kabakli, Öezde S.
    Tutsch, Leonard
    Bivour, Martin
    Siefer, Gerald
    Schubert, Martin C.
    Goldschmidt, Jan Christoph
    Hermle, Martin
    Glunz, Stefan W.
    Schulze, Patricia S. C.
    SOLAR RRL, 2023, 7 (07)
  • [23] Perovskite/silicon tandem solar cell: Surface recombination analysis
    Xv, LiyiFei
    He, YiZhou
    Zheng, HuiYi
    Guo, XiaoWei
    10TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: NOVEL OPTOELECTRONIC FUNCTIONAL MATERIALS AND DEVICES, 2021, 12074
  • [24] Subcell-Resolved Electroluminescence Imaging of Monolithic Perovskite/Silicon Tandem Solar Cell for High-Throughput Characterization
    Djeukeu, Ivanol Jaurece
    Horn, Jonas
    Meixner, Michael
    Wagner, Enno
    Glunz, Stefan W.
    Ramspeck, Klaus
    SOLAR RRL, 2024, 8 (19):
  • [25] Optical Simulation-Aided Design and Engineering of Monolithic Perovskite/Silicon Tandem Solar Cells
    Zhao, Yifeng
    Datta, Kunal
    Phung, Nga
    Bracesco, Andrea E. A.
    Zardetto, Valerio
    Paggiaro, Giulia
    Liu, Hanchen
    Fardousi, Mohua
    Santbergen, Rudi
    Moya, Paul Procel
    Han, Can
    Yang, Guangtao
    Wang, Junke
    Zhang, Dong
    van Gorkom, Bas T.
    Van der Pol, Tom P. A.
    Verhage, Michael
    Wienk, Martijn M.
    Kessels, Wilhelmus M. M.
    Weeber, Arthur
    Zeman, Miro
    Mazzarella, Luana
    Creatore, Mariadriana
    Janssen, Rene A. J.
    Isabella, Olindo
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (10) : 5217 - 5229
  • [26] Back contact optimization of both sub-cells in bifacial perovskite/silicon tandem solar cell
    Abbasiyan, Amin
    Golmohammadi, Saeed
    RENEWABLE ENERGY, 2025, 242
  • [27] Surface Reconstruction for Efficient and Stable Monolithic Perovskite/Silicon Tandem Solar Cells with Greatly Suppressed Residual Strain
    Li, Xin
    Ying, Zhiqin
    Zheng, Jingming
    Wang, Xinlong
    Chen, Ying
    Wu, Ming
    Xiao, Chuanxiao
    Sun, Jingsong
    Shou, Chunhui
    Yang, Zhenhai
    Zeng, Yuheng
    Yang, Xi
    Ye, Jichun
    ADVANCED MATERIALS, 2023, 35 (30)
  • [28] Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction
    Sahli, Florent
    Kamino, Brett A.
    Werner, Jeremie
    Brauninger, Matthias
    Paviet-Salomon, Bertrand
    Barraud, Loris
    Monnard, Raphael
    Seif, Johannes Peter
    Tomasi, Andrea
    Jeangros, Quentin
    Hessler-Wyser, Aicha
    De Wolf, Stefaan
    Despeisse, Matthieu
    Nicolay, Sylvain
    Niesen, Bjoern
    Ballif, Christophe
    ADVANCED ENERGY MATERIALS, 2018, 8 (06)
  • [29] Laminated Monolithic Perovskite/Silicon Tandem Photovoltaics
    Roger, Julie
    Schorn, Luisa K.
    Heydarian, Minasadat
    Farag, Ahmed
    Feeney, Thomas
    Baumann, Daniel
    Hu, Hang
    Laufer, Felix
    Duan, Weiyuan
    Ding, Kaining
    Lambertz, Andreas
    Fassl, Paul
    Worgull, Matthias
    Paetzold, Ulrich W.
    ADVANCED ENERGY MATERIALS, 2022, 12 (27)
  • [30] Efficient interconnecting layers in monolithic all-perovskite tandem solar cells
    Zhang, Meng
    Lin, Zhiqun
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (08) : 3152 - 3170