ATP-Dependent Dynamic Protein Aggregation Regulates Bacterial Dormancy Depth Critical for Antibiotic Tolerance

被引:224
作者
Pu, Yingying [1 ]
Li, Yingxing [1 ]
Jin, Xin [1 ]
Tian, Tian [1 ]
Ma, Qi [1 ]
Zhao, Ziyi [1 ]
Lin, Ssu-yuan [2 ,3 ]
Chen, Zhanghua [1 ]
Li, Binghui [4 ]
Yao, Guang [5 ]
Leake, Mark C. [6 ,7 ]
Lo, Chien-Jung [2 ,3 ]
Bai, Fan [1 ]
机构
[1] Peking Univ, Sch Life Sci, Biomed Pioneering Innovat Ctr BIOPIC, Beijing 100871, Peoples R China
[2] Natl Cent Univ, Dept Phys, Taoyuan 32001, Taiwan
[3] Natl Cent Univ, Grad Inst Biophys, Taoyuan 32001, Taiwan
[4] Capital Med Univ, Dept Biochem & Mol Biol, Beijing 100069, Peoples R China
[5] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
[6] Univ York, Dept Phys, York YO10, N Yorkshire, England
[7] Univ York, Dept Biol, York YO10, N Yorkshire, England
基金
英国生物技术与生命科学研究理事会; 中国国家自然科学基金;
关键词
ESCHERICHIA-COLI K-12; PERSISTENCE; CHAPERONES;
D O I
10.1016/j.molcel.2018.10.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cell dormancy is a widespread mechanism used by bacteria to evade environmental threats, including antibiotics. Here we monitored bacterial antibiotic tolerance and regrowth at the single-cell level and found that each individual survival cell shows different "dormancy depth," which in return regulates the lag time for cell resuscitation after removal of antibiotic. We further established that protein aggresome-a collection of endogenous protein aggregates-is an important indicator of bacterial dormancy depth, whose formation is promoted by decreased cellular ATP level. For cells to leave the dormant state and resuscitate, clearance of protein aggresome and recovery of proteostasis are required. We revealed that the ability to recruit functional DnaK-ClpB machineries, which facilitate protein disaggregation in an ATP-dependent manner, determines the lag time for bacterial regrowth. Better understanding of the key factors regulating bacterial regrowth after surviving antibiotic attack could lead to new therapeutic strategies for combating bacterial antibiotic tolerance.
引用
收藏
页码:143 / +
页数:18
相关论文
共 44 条
  • [1] Metabolite-enabled eradication of bacterial persisters by aminoglycosides
    Allison, Kyle R.
    Brynildsen, Mark P.
    Collins, James J.
    [J]. NATURE, 2011, 473 (7346) : 216 - +
  • [2] Bacterial persistence as a phenotypic switch
    Balaban, NQ
    Merrin, J
    Chait, R
    Kowalik, L
    Leibler, S
    [J]. SCIENCE, 2004, 305 (5690) : 1622 - 1625
  • [3] Recombinant protein folding and misfolding in Escherichia coli
    Baneyx, F
    Mujacic, M
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (11) : 1399 - 1408
  • [4] A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage
    Bohnert, K. Adam
    Kenyon, Cynthia
    [J]. NATURE, 2017, 551 (7682) : 629 - +
  • [5] Boucher R C, 2001, Trans Am Clin Climatol Assoc, V112, P99
  • [6] Letting Sleeping dos Lie: Does Dormancy Play a Role in Tuberculosis?
    Chao, Michael C.
    Rubin, Eric J.
    [J]. ANNUAL REVIEW OF MICROBIOLOGY, VOL 64, 2010, 2010, 64 : 293 - 311
  • [7] Conlon BP, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.51, 10.1038/nmicrobiol.2016.51]
  • [8] One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    Datsenko, KA
    Wanner, BL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) : 6640 - 6645
  • [9] A set of recombineering plasmids for gram-negative bacteria
    Datta, Simanti
    Costantino, Nina
    Court, Donald L.
    [J]. GENE, 2006, 379 : 109 - 115
  • [10] Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations
    Fridman, Ofer
    Goldberg, Amir
    Ronin, Irine
    Shoresh, Noam
    Balaban, Nathalie Q.
    [J]. NATURE, 2014, 513 (7518) : 418 - +