Quantitative assessment of lung involvement on chest CT at admission: Impact on hypoxia and outcome in COVID-19 patients

被引:13
作者
Esposito, Antonio [1 ,2 ]
Palmisano, Anna [1 ,2 ]
Cao, Roberta [1 ,2 ]
Rancoita, Paola [3 ]
Landoni, Giovanni [2 ,4 ]
Grippaldi, Daniele [1 ,2 ]
Boccia, Edda [5 ]
Cosenza, Michele [1 ,2 ]
Messina, Antonio [1 ,2 ]
La Marca, Salvatore [1 ,2 ]
Palumbo, Diego [1 ,2 ]
Di Serio, Clelia [2 ,3 ]
Spessot, Marzia [6 ]
Tresoldi, Moreno [7 ]
Scarpellini, Paolo [8 ]
Ciceri, Fabio [2 ,9 ]
Zangrillo, Alberto [2 ,4 ]
De Cobelli, Francesco [1 ,2 ]
机构
[1] IRCCS San Raffaele Hosp, Expt Imaging Ctr, Radiol Unit, Milan, Italy
[2] Univ Vita Salute San Raffaele, Sch Med, Milan, Italy
[3] Univ Vita Salute San Raffaele, Univ Ctr Stat Biomed Sci, Milan, Italy
[4] IRCCS San Raffaele Sci Inst, Dept Anesthesia & Intens Care, Milan, Italy
[5] IRCCS San Raffaele Hosp, Expt Imaging Ctr, Imaging Anal & Postproc, Milan, Italy
[6] IRCCS San Raffaele Hosp, Emergency Dept, Emergency Med, Milan, Italy
[7] IRCCS San Raffaele Sci Inst, Unit Gen Med & Adv Care, Milan, Italy
[8] IRCCS San Raffaele Sci Inst, Infect Dis Dept, Milan, Italy
[9] IRCCS San Raffaele Sci Inst, Hematol & Bone Marrow Transplantat, Milan, Italy
关键词
Covid-19; Quantitative CT; Artificial intelligence; Pneumonia; Outcome; COMPUTED-TOMOGRAPHY; PNEUMONIA;
D O I
10.1016/j.clinimag.2021.04.033
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: The aim of this study was to quantify COVID-19 pneumonia features using CT performed at time of admission to emergency department in order to predict patients' hypoxia during the hospitalization and outcome. Methods: Consecutive chest CT performed in the emergency department between March 1st and April 7th 2020 for COVID-19 pneumonia were analyzed. The three features of pneumonia (GGO, semi-consolidation and consolidation) and the percentage of well-aerated lung were quantified using a HU threshold based software. ROC curves identified the optimal cut-off values of CT parameters to predict hypoxia worsening and hospital discharge. Multiple Cox proportional hazards regression was used to analyze the capability of CT quantitative features, demographic and clinical variables to predict the time to hospital discharge. Results: Seventy-seven patients (median age 56-years-old, 51 men) with COVID-19 pneumonia at CT were enrolled. The quantitative features of COVID-19 pneumonia were not associated to age, sex and time-fromsymptoms onset, whereas higher number of comorbidities was correlated to lower well-aerated parenchyma ratio (rho = -0.234, p = 0.04) and increased semi-consolidation ratio (rho = -0.303, p = 0.008). Well-aerated lung ( 57%), semi-consolidation ( 17%) and consolidation (>9%) predicted worst hypoxemia during hospitalization, with moderate areas under curves (AUC 0.76, 0.75, 0.77, respectively). Multiple Cox regression identified younger age (p < 0.01), female sex (p < 0.001), longer time-from-symptoms onset (p = 0.049), semi-consolidation <17% (p < 0.01) and consolidation <13% (p = 0.03) as independent predictors of shorter time to hospital discharge. Conclusion: Quantification of pneumonia features on admitting chest CT predicted hypoxia worsening during hospitalization and time to hospital discharge in COVID-19 patients.
引用
收藏
页码:194 / 201
页数:8
相关论文
共 31 条
[11]  
Inui S, 2020, CARDIOTHORAC IMAGING, V2
[12]   CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19) [J].
Li, Kunwei ;
Fang, Yijie ;
Li, Wenjuan ;
Pan, Cunxue ;
Qin, Peixin ;
Zhong, Yinghua ;
Liu, Xueguo ;
Huang, Mingqian ;
Liao, Yuting ;
Li, Shaolin .
EUROPEAN RADIOLOGY, 2020, 30 (08) :4407-4416
[13]   CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients [J].
Liu, Fengjun ;
Zhang, Qi ;
Huang, Chao ;
Shi, Chunzi ;
Wang, Lin ;
Shi, Nannan ;
Fang, Cong ;
Shan, Fei ;
Mei, Xue ;
Shi, Jing ;
Song, Fengxiang ;
Yang, Zhongcheng ;
Ding, Zezhen ;
Su, Xiaoming ;
Lu, Hongzhou ;
Zhu, Tongyu ;
Zhang, Zhiyong ;
Shi, Lei ;
Shi, Yuxin .
THERANOSTICS, 2020, 10 (12) :5613-5622
[14]   Incidence and characterization of acute pulmonary embolism in patients with SARS-CoV-2 pneumonia: A multicenter Italian experience [J].
Loffi, Marco ;
Regazzoni, Valentina ;
Toselli, Marco ;
Cereda, Alberto ;
Palmisano, Anna ;
Vignale, Davide ;
Moroni, Francesco ;
Pontone, Gianluca ;
Andreini, Daniele ;
Mancini, Elisabetta Maria ;
Monello, Alberto ;
Iannopollo, Gianmarco ;
Casella, Gianni ;
Monetti, Francesco ;
Monti, Lorenzo ;
Ferrillo, Giuseppe ;
Liccardo, Gaetano ;
Tonet, Elisabetta ;
Zucchetti, Ottavio ;
Cossu, Alberto ;
Dugo, Marco ;
Patelli, Gianluigi ;
Sergio, Pietro ;
Esposito, Antonio ;
Colombo, Antonio ;
Giannini, Francesco ;
Piccolo, Raffaele ;
Danzi, Gian Battista .
PLOS ONE, 2021, 16 (01)
[15]   Treatment for severe acute respiratory distress syndrome from COVID-19 [J].
Matthay, Michael A. ;
Aldrich, J. Matthew ;
Gotts, Jeffrey E. .
LANCET RESPIRATORY MEDICINE, 2020, 8 (05) :433-434
[16]   Use of CT and artificial intelligence in suspected or COVID-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology [J].
Neri, Emanuele ;
Miele, Vittorio ;
Coppola, Francesca ;
Grassi, Roberto .
RADIOLOGIA MEDICA, 2020, 125 (05) :505-508
[17]   A predictive factor for patients with acute respiratory distress syndrome: CT lung volumetry of the well-aerated region as an automated method [J].
Nishiyama, Akira ;
Kawata, Naoko ;
Yokota, Hajime ;
Sugiura, Toshihiko ;
Matsumura, Yosuke ;
Higashide, Takashi ;
Horikoshi, Takuro ;
Oda, Shigeto ;
Tatsumi, Koichiro ;
Uno, Takashi .
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 122
[18]   Chest CT in the emergency department for suspected COVID-19 pneumonia [J].
Palmisano, Anna ;
Scotti, Giulia Maria ;
Ippolito, Davide ;
Morelli, Marco J. ;
Vignale, Davide ;
Gandola, Davide ;
Sironi, Sandro ;
De Cobelli, Francesco ;
Ferrante, Luca ;
Spessot, Marzia ;
Tonon, Giovanni ;
Tacchetti, Carlo ;
Esposito, Antonio .
RADIOLOGIA MEDICA, 2021, 126 (03) :498-502
[19]   Time Course of Lung Changes a Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19 ) [J].
Pan, Feng ;
Ye, Tianhe ;
Sun, Peng ;
Gui, Shan ;
Liang, Bo ;
Li, Lingli ;
Zheng, Dandan ;
Wang, Jiazheng ;
Hesketh, Richard L. ;
Yang, Lian ;
Zheng, Chuansheng .
RADIOLOGY, 2020, 295 (03) :715-721
[20]   "Quadruple Rule-Out" With Computed Tomography in a COVID-19 Patient With Equivocal Acute Coronary Syndrome Presentation [J].
Pontone, Gianluca ;
Baggiano, Andrea ;
Conte, Edoardo ;
Teruzzi, Giovanni ;
Cosentino, Nicola ;
Campodonico, Jeness ;
Rabbat, Mark G. ;
Assanelli, Emilio ;
Palmisano, Anna ;
Esposito, Antonio ;
Trabattoni, Daniela .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (08) :1854-1856