Quantitative assessment of lung involvement on chest CT at admission: Impact on hypoxia and outcome in COVID-19 patients

被引:13
作者
Esposito, Antonio [1 ,2 ]
Palmisano, Anna [1 ,2 ]
Cao, Roberta [1 ,2 ]
Rancoita, Paola [3 ]
Landoni, Giovanni [2 ,4 ]
Grippaldi, Daniele [1 ,2 ]
Boccia, Edda [5 ]
Cosenza, Michele [1 ,2 ]
Messina, Antonio [1 ,2 ]
La Marca, Salvatore [1 ,2 ]
Palumbo, Diego [1 ,2 ]
Di Serio, Clelia [2 ,3 ]
Spessot, Marzia [6 ]
Tresoldi, Moreno [7 ]
Scarpellini, Paolo [8 ]
Ciceri, Fabio [2 ,9 ]
Zangrillo, Alberto [2 ,4 ]
De Cobelli, Francesco [1 ,2 ]
机构
[1] IRCCS San Raffaele Hosp, Expt Imaging Ctr, Radiol Unit, Milan, Italy
[2] Univ Vita Salute San Raffaele, Sch Med, Milan, Italy
[3] Univ Vita Salute San Raffaele, Univ Ctr Stat Biomed Sci, Milan, Italy
[4] IRCCS San Raffaele Sci Inst, Dept Anesthesia & Intens Care, Milan, Italy
[5] IRCCS San Raffaele Hosp, Expt Imaging Ctr, Imaging Anal & Postproc, Milan, Italy
[6] IRCCS San Raffaele Hosp, Emergency Dept, Emergency Med, Milan, Italy
[7] IRCCS San Raffaele Sci Inst, Unit Gen Med & Adv Care, Milan, Italy
[8] IRCCS San Raffaele Sci Inst, Infect Dis Dept, Milan, Italy
[9] IRCCS San Raffaele Sci Inst, Hematol & Bone Marrow Transplantat, Milan, Italy
关键词
Covid-19; Quantitative CT; Artificial intelligence; Pneumonia; Outcome; COMPUTED-TOMOGRAPHY; PNEUMONIA;
D O I
10.1016/j.clinimag.2021.04.033
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: The aim of this study was to quantify COVID-19 pneumonia features using CT performed at time of admission to emergency department in order to predict patients' hypoxia during the hospitalization and outcome. Methods: Consecutive chest CT performed in the emergency department between March 1st and April 7th 2020 for COVID-19 pneumonia were analyzed. The three features of pneumonia (GGO, semi-consolidation and consolidation) and the percentage of well-aerated lung were quantified using a HU threshold based software. ROC curves identified the optimal cut-off values of CT parameters to predict hypoxia worsening and hospital discharge. Multiple Cox proportional hazards regression was used to analyze the capability of CT quantitative features, demographic and clinical variables to predict the time to hospital discharge. Results: Seventy-seven patients (median age 56-years-old, 51 men) with COVID-19 pneumonia at CT were enrolled. The quantitative features of COVID-19 pneumonia were not associated to age, sex and time-fromsymptoms onset, whereas higher number of comorbidities was correlated to lower well-aerated parenchyma ratio (rho = -0.234, p = 0.04) and increased semi-consolidation ratio (rho = -0.303, p = 0.008). Well-aerated lung ( 57%), semi-consolidation ( 17%) and consolidation (>9%) predicted worst hypoxemia during hospitalization, with moderate areas under curves (AUC 0.76, 0.75, 0.77, respectively). Multiple Cox regression identified younger age (p < 0.01), female sex (p < 0.001), longer time-from-symptoms onset (p = 0.049), semi-consolidation <17% (p < 0.01) and consolidation <13% (p = 0.03) as independent predictors of shorter time to hospital discharge. Conclusion: Quantification of pneumonia features on admitting chest CT predicted hypoxia worsening during hospitalization and time to hospital discharge in COVID-19 patients.
引用
收藏
页码:194 / 201
页数:8
相关论文
共 31 条
[1]   Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases [J].
Ai, Tao ;
Yang, Zhenlu ;
Hou, Hongyan ;
Zhan, Chenao ;
Chen, Chong ;
Lv, Wenzhi ;
Tao, Qian ;
Sun, Ziyong ;
Xia, Liming .
RADIOLOGY, 2020, 296 (02) :E32-E40
[2]  
[Anonymous], 2020, JAMA-J AM MED ASSOC, DOI DOI 10.1001/JAMA.2020.6775
[3]   Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study [J].
Chiumello, Davide ;
Busana, Mattia ;
Coppola, Silvia ;
Romitti, Federica ;
Formenti, Paolo ;
Bonifazi, Matteo ;
Pozzi, Tommaso ;
Palumbo, Maria Michela ;
Cressoni, Massimo ;
Herrmann, Peter ;
Meissner, Konrad ;
Quintel, Michael ;
Camporota, Luigi ;
Marini, John J. ;
Gattinoni, Luciano .
INTENSIVE CARE MEDICINE, 2020, 46 (12) :2187-2196
[4]   Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia [J].
Colombi, Davide ;
Bodini, Flavio C. ;
Petrini, Marcello ;
Maffi, Gabriele ;
Morelli, Nicola ;
Milanese, Gianluca ;
Silva, Mario ;
Sverzellati, Nicola ;
Michieletti, Emanuele .
RADIOLOGY, 2020, 296 (02) :E86-E96
[5]  
De Wever W, 2011, INSIGHTS IMAGING, V2, P117, DOI 10.1007/s13244-010-0060-5
[6]   Chest CT-derived pulmonary artery enlargement at the admission predicts overall survival in COVID-19 patients: insight from 1461 consecutive patients in Italy [J].
Esposito, Antonio ;
Palmisano, Anna ;
Toselli, Marco ;
Vignale, Davide ;
Cereda, Alberto ;
Rancoita, Paola Maria Vittoria ;
Leone, Riccardo ;
Nicoletti, Valeria ;
Gnasso, Chiara ;
Monello, Alberto ;
Biagi, Andrea ;
Turchio, Piergiorgio ;
Landoni, Giovanni ;
Gallone, Guglielmo ;
Monti, Giacomo ;
Casella, Gianni ;
Iannopollo, Gianmarco ;
Nannini, Tommaso ;
Patelli, Gianluigi ;
Di Mare, Luisa ;
Loffi, Marco ;
Sergio, Pietro ;
Ippolito, Davide ;
Sironi, Sandro ;
Pontone, Gianluca ;
Andreini, Daniele ;
Mancini, Elisabetta Maria ;
Di Serio, Clelia ;
De Cobelli, Francesco ;
Ciceri, Fabio ;
Zangrillo, Alberto ;
Colombo, Antonio ;
Tacchetti, Carlo ;
Giannini, Francesco .
EUROPEAN RADIOLOGY, 2021, 31 (06) :4031-4041
[7]   Imaging of Pulmonary Viral Pneumonia [J].
Franquet, Tomas .
RADIOLOGY, 2011, 260 (01) :18-39
[8]  
Hosmer DW, 2013, WILEY SER PROBAB ST, P1, DOI 10.1002/9781118548387
[9]   Timely Diagnosis and Treatment Shortens the Time to Resolution of Coronavirus Disease (COVID-19) Pneumonia and Lowers the Highest and Last CT Scores From Sequential Chest CT [J].
Huang, Guoquan ;
Gong, Tao ;
Wang, Guangbin ;
Wang, Jianwen ;
Guo, Xinfu ;
Cai, Erpeng ;
Li, Shirong ;
Li, Xiaohu ;
Yu, Yongqiang ;
Lin, Liangjie .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (02) :367-373
[10]   Serial Quantitative Chest CT Assessment of COVID-19: A Deep Learning Approach [J].
Huang, Lu ;
Han, Rui ;
Ai, Tao ;
Yu, Pengxin ;
Kang, Han ;
Tao, Qian ;
Xia, Liming .
RADIOLOGY-CARDIOTHORACIC IMAGING, 2020, 2 (02)