Time temperature transformation diagram for secondary crystal products of Co-based Co-Fe-B-Si-Nb-Mn soft magnetic nanocomposite

被引:15
作者
DeGeorge, V. [1 ]
Zoghlin, E. [1 ]
Keylin, V. [1 ]
McHenry, M. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
关键词
ALLOYS; CRYSTALLIZATION; KINETICS; PHASE;
D O I
10.1063/1.4916759
中图分类号
O59 [应用物理学];
学科分类号
摘要
Secondary crystallization is the subject of much investigation in magnetic amorphous and nanocomposites (MANCs) as it limits the long term and thermal stability of their operation in device applications, including power electronics, sensors, and electric motors. Secondary crystal products [Blazquez et al., Philos. Mag. Lett. 82(7), 409-417 (2002); Ohodnicki et al., Phys. Rev. B 78, 144414 (2008); Willard et al., Metall. Mater. Trans. A 38, 725 (2007)], nanostructure and crystallization kinetics [Hsiao et al., IEEE Trans. Magn. 38(5), 3039 (2002); McHenry et al., Scr. Mater. 48(7), 881 (2003)], and onset temperatures and activation energies [Ohodnicki et al., Acta. Mater. 57, 87 (2009); Long et al., J. Appl. Phys. 101, 09N114 (2007)] at constant heating have been reported for similar alloys. However, a time-temperature-transformation (TTT) diagram for isothermal crystallization, more typical of application environments, has not been reported in literature. Here, a TTT diagram for the Co based, Co-Fe-Si-Nb-B-Mn MANC system is presented, along with a method for determining such. The method accounts for the presence of primary crystal phases and yields crystal fraction of secondary phase(s) by using a novel four stage heating profile. The diagram, affirmed by Kissinger activation energy analysis, reports thermal stability of the MANC for millennia at conventional device operating temperatures, and stability limits less than a minute at elevated temperatures. Both extremes are necessary to be able to avoid secondary crystalline products and establish operating limits for this mechanically attractive, high induction soft magnetic nanocomposite. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:3
相关论文
共 11 条
[1]   A study of the fcc (FeCo)23B6 phase in fully crystallized Fe-Co-Nb-B-Cu alloys [J].
Blázquez, JS ;
Lozano-Pérez, S ;
Conde, A .
PHILOSOPHICAL MAGAZINE LETTERS, 2002, 82 (07) :409-417
[2]   The thermal, magnetic, and structural characterization of the crystallization kinetics of Fe88Zr7B4Cu1, an amorphous soft magnetic ribbon [J].
Hsiao, A ;
McHenry, ME ;
Laughlin, DE ;
Kramer, MJ ;
Ashe, C ;
Ohkubo, T .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) :3039-3044
[3]   Secondary crystallization in (Fe65Co35)79.5+xB13Nb4-xSi2Cu1.5 and (Fe65Co35)83B10Nb4Si2Cu1 nanocomposite alloys [J].
Kernion, Samuel J. ;
Keylin, Vladimir ;
Huth, Joe ;
McHenry, Michael E. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
[4]  
Long J., 2007, J. Appl. Phys, V101, p09N114, DOI DOI 10.1063/1.2714250
[5]  
McHenry M. E., 2012, ENERGY TECHNOLOGY 20, P275
[6]   The kinetics of nanocrystallization and microstructural observations in FINEMET, NANOPERM and HITPERM nanocomposite magnetic materials [J].
McHenry, ME ;
Johnson, F ;
Okumura, H ;
Ohkubo, T ;
Ramanan, VRV ;
Laughlin, DE .
SCRIPTA MATERIALIA, 2003, 48 (07) :881-887
[7]   Composition and non-equilibrium crystallization in partially devitrified co-rich soft magnetic nanocomposite alloys [J].
Ohodnicki, P. R. ;
Qin, Y. L. ;
Laughlin, D. E. ;
McHenry, M. E. ;
Kodzuka, M. ;
Ohkubo, T. ;
Hono, K. ;
Willard, M. A. .
ACTA MATERIALIA, 2009, 57 (01) :87-96
[8]  
Ohodnicki P.R., 2008, THESIS CARNEGIE MELL
[9]   Ab initio theoretical study of magnetization and phase stability of the (Fe,Co,Ni)23B6 and (Fe,Co,Ni)23Zr6 structures of Cr23C6 and Mn23Th6 prototypes [J].
Ohodnicki, P. R., Jr. ;
Cates, N. C. ;
Laughlin, D. E. ;
McHenry, M. E. ;
Widom, M. .
PHYSICAL REVIEW B, 2008, 78 (14)
[10]   Phase formation in isothermally annealed (Co0.95Fe0.05)89Zr7B4 Nanocrystalline alloys [J].
Willard, Matthew A. ;
Heil, Todd M. ;
Goswami, Ramasis .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2007, 38A (04) :725-731