Exciton Hall effect in monolayer MoS2

被引:1
|
作者
Onga, Masaru [1 ,2 ]
Zhang, Yijin [3 ,4 ]
Ideue, Toshiya [1 ,2 ]
Iwasa, Yoshihiro [1 ,2 ,5 ]
机构
[1] Univ Tokyo, QPEC, Tokyo 1138656, Japan
[2] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[3] Osaka Univ, Inst Sci & Ind Res, Osaka 0670047, Japan
[4] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[5] RIKEN, CEMS, Wako, Saitama 3510198, Japan
基金
日本学术振兴会;
关键词
VALLEY POLARIZATION; ABSORPTION; LAYER;
D O I
10.1038/NMAT4996
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The spontaneous Hall effect driven by the quantum Berry phase (which serves as an internal magnetic flux in momentum space) manifests the topological nature of quasiparticles and can be used to control the information flow, such as spin and valley(1,2). We report a Hall effect of excitons (fundamental composite particles of electrons and holes that dominate optical responses in semiconductors(3)). By polarization-resolved photoluminescence mapping, we directly observed the Hall effect of excitons in monolayer MoS2 and valley-selective spatial transport of excitons on a micrometre scale. The Hall angle of excitons is found to be much larger than that of single electrons in monolayer MoS2 (ref. 4), implying that the quantum transport of the composite particles is significantly affectedby their internal structures. Thepresent result not only poses a fundamental problem of the Hall effect in composite particles, but also offers a route to explore exciton-based valleytronics in two-dimensional materials.
引用
收藏
页码:1193 / +
页数:6
相关论文
共 50 条
  • [41] Monolayer MoS2 epitaxy
    Zheng Wei
    Qinqin Wang
    Lu Li
    Rong Yang
    Guangyu Zhang
    Nano Research, 2021, 14 : 1598 - 1608
  • [42] Effect of strain on the band gap of monolayer MoS2
    Sah, Raj K.
    Tang, Hong
    Shahi, Chandra
    Ruzsinszky, Adrienn
    Perdew, John P.
    PHYSICAL REVIEW B, 2024, 110 (14)
  • [43] σ-Aromaticity in the MoS2 Monolayer
    Kulichenko, Maksim
    Boldyrev, Alexander, I
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (11): : 6267 - 6273
  • [44] Electrical Doping Effect of Vacancies on Monolayer MoS2
    Yang, Jing
    Kawai, Hiroyo
    Wong, Calvin Pei Yu
    Goh, Kuan Eng Johnson
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (05): : 2933 - 2939
  • [45] Robust quantum anomalous Hall effect in a pentagonal MoS2 monolayer grown on CuI(001) substrates
    Fang, Yimei
    Chen, Siyu
    Lu, Xiancong
    Wu, Shunqing
    Zhu, Zi-Zhong
    PHYSICAL REVIEW B, 2021, 103 (11)
  • [46] Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices
    Li, Xiaodan
    Wu, Shunqing
    Zhou, Sen
    Zhu, Zizhong
    NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 9
  • [47] Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices
    Xiaodan Li
    Shunqing Wu
    Sen Zhou
    Zizhong Zhu
    Nanoscale Research Letters, 9
  • [48] Exciton dynamics in monolayer and few-layer MoS2 2D crystals
    Huang, Libai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [49] Strain induced lifting of the charged exciton degeneracy in monolayer MoS2 on a GaAs nanomembrane
    Jasinski, Jakub
    Balgarkashi, Akshay
    Piazza, Valerio
    Dede, Didem
    Surrente, Alessandro
    Baranowski, Michal
    Maude, Duncan K.
    Banerjee, Mitali
    Frisenda, Riccardo
    Castellanos-Gomez, Andres
    Morral, Anna Fontcuberta i
    Plochocka, Paulina
    2D MATERIALS, 2022, 9 (04)
  • [50] Enhanced Carrier-Exciton Interactions in Monolayer MoS2 under Applied Voltages
    Li, Yuanzheng
    Liu, Weizhen
    Ren, Hang
    Feng, Qiushi
    Yan, Jiaxu
    Zhong, Weiheng
    Xin, Xing
    Xu, Haiyang
    Liu, Yichun
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) : 18870 - 18876