Machine Learning-Based Radiomics Nomogram With Dynamic Contrast-Enhanced MRI of the Osteosarcoma for Evaluation of Efficacy of Neoadjuvant Chemotherapy

被引:25
作者
Zhang, Lu [1 ]
Ge, Yinghui [1 ]
Gao, Qiuru [1 ]
Zhao, Fei [2 ]
Cheng, Tianming [1 ]
Li, Hailiang [3 ]
Xia, Yuwei [4 ]
机构
[1] Zhengzhou Univ, Dept Med Imaging, Peoples Hosp, Henan Prov Peoples Hosp, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Dept Orthoped, Henan Prov Peoples Hosp, Peoples Hosp, Zhengzhou, Peoples R China
[3] Henan Prov Canc Hosp, Dept Radiol, Zhengzhou, Peoples R China
[4] Huiying Med Technol Co Ltd, Beijing, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2021年 / 11卷
关键词
osteosarcoma; MRI; radiomics; nomogram; neoadjuvant chemotherapy; CANCER; RADIOGENOMICS; DIAGNOSIS;
D O I
10.3389/fonc.2021.758921
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
ObjectivesThis study aims to evaluate the value of machine learning-based dynamic contrast-enhanced MRI (DCE-MRI) radiomics nomogram in prediction treatment response of neoadjuvant chemotherapy (NAC) in patients with osteosarcoma. MethodsA total of 102 patients with osteosarcoma and who underwent NAC were enrolled in this study. All patients received a DCE-MRI scan before NAC. The Response Evaluation Criteria in Solid Tumors was used as the standard to evaluate the NAC response with complete remission and partial remission in the effective group, stable disease, and progressive disease in the ineffective group. The following semi-quantitative parameters of DCE-MRI were calculated: early dynamic enhancement wash-in slope (Slope), time to peak (TTP), and enhancement rate (R). The acquired data is randomly divided into 70% for training and 30% for testing. Variance threshold, univariate feature selection, and least absolute shrinkage and selection operator were used to select the optimal features. Three classifiers (K-nearest neighbor, KNN; support vector machine, SVM; and logistic regression, LR) were implemented for model establishment. The performance of different classifiers and conventional semi-quantitative parameters was evaluated by confusion matrix and receiver operating characteristic curves. Furthermore, clinically relevant risk factors including age, tumor size and site, pathological fracture, and surgical staging were collected to evaluate their predictive values for the efficacy of NAC. The selected clinical features and imaging features were combined to establish the model and the nomogram, and then the predictive efficacy was evaluated. ResultsThe clinical relevance risk factor analysis demonstrates that only surgical stage was an independent predictor of NAC. A total of seven radiomic features were selected, and three machine learning models (KNN, SVM, and LR) were established based on such features. The prediction accuracy (ACC) of these three models was 0.89, 0.84, and 0.84, respectively. The area under the subject curve (AUC) of these three models was 0.86, 0.92, and 0.93, respectively. As for Slope, TTP, and R parameters, the prediction ACC was 0.91, 0.89, and 0.81, respectively, while the AUC was 0.87, 0.85, and 0.83, respectively. In both the training and testing sets, the ACC and AUC of the combined model were higher than those of the radiomics models (ACC = 0.91 and AUC = 0.95), which indicate an outstanding performance of our proposed model. ConclusionsThe radiomics nomogram demonstrates satisfactory predictive results for the treatment response of patients with osteosarcoma before NAC. This finding may provide a new decision basis to improve the treatment plan.
引用
收藏
页数:12
相关论文
共 25 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   Differentiation Between Vasogenic Edema and Infiltrative Tumor in Patients With High-Grade Gliomas Using Texture Patch-Based Analysis [J].
Artzi, Moran ;
Liberman, Gilad ;
Blumenthal, Deborah T. ;
Aizenstein, Orna ;
Bokstein, Felix ;
Ben Bashat, Dafna .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :729-736
[3]   Beyond imaging: The promise of radiomics [J].
Avanzo, Michele ;
Stancanello, Joseph ;
El Naqa, Issam .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 :122-139
[4]   Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Casali, P. G. ;
Bielack, S. ;
Abecassis, N. ;
Aro, H. T. ;
Bauer, S. ;
Biagini, R. ;
Bonvalot, S. ;
Boukovinas, I. ;
Bovee, J. V. M. G. ;
Brennan, B. ;
Brodowicz, T. ;
Martin-Broto, J. ;
Brugieres, L. ;
Buonadonna, A. ;
De Alava, E. ;
Dei Tos, A. P. ;
Del Muro, X. G. ;
Dileo, P. ;
Dhooge, C. ;
Eriksson, M. ;
Fagioli, F. ;
Fedenko, A. ;
Ferraresi, V. ;
Ferrari, A. ;
Ferrari, S. ;
Frezza, A. M. ;
Gaspar, N. ;
Gasperoni, S. ;
Gelderblom, H. ;
Gil, T. ;
Grignani, G. ;
Gronchi, A. ;
Haas, R. L. ;
Hassan, B. ;
Hecker-Nolting, S. ;
Hohenberger, P. ;
Issels, R. ;
Joensuu, H. ;
Jones, R. L. ;
Judson, I. ;
Jutte, P. ;
Kaal, S. ;
Kager, L. ;
Kasper, B. ;
Kopeckova, K. ;
Krakorova, D. A. ;
Ladenstein, R. ;
Le Cesne, A. ;
Lugowska, I. ;
Merimsky, O. .
ANNALS OF ONCOLOGY, 2018, 29 :79-95
[5]   Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Casali, Paolo G. ;
Blay, Jean-Yves ;
Bertuzzi, Alexia ;
Bielack, Stefan ;
Bjerkehagen, Bodil ;
Bonvalot, Sylvie ;
Boukovinas, Ioannis ;
Bruzzi, Paolo ;
Dei Tos, Angelo Paolo ;
Dileo, Palma ;
Eriksson, Mikael ;
Fedenko, Alexander ;
Ferrari, Andrea ;
Ferrari, Stefano ;
Gelderblom, Hans ;
Grimer, Robert ;
Gronchi, Alessandro ;
Haas, Rick ;
Hall, Kirsten Sundby ;
Hohenberger, Peter ;
Issels, Rolf ;
Joensuu, Heikki ;
Judson, Ian ;
Le Cesne, Axel ;
Litiere, Saskia ;
Martin-Broto, Javier ;
Merimsky, Ofer ;
Montemurro, Michael ;
Morosi, Carlo ;
Picci, Piero ;
Ray-Coquard, Isabelle ;
Reichardt, Peter ;
Rutkowski, Piotr ;
Schlemmer, Marcus ;
Stacchiotti, Silvia ;
Torri, Valter ;
Trama, Annalisa ;
Van Coevorden, Frits ;
Van der Graaf, Winette ;
Vanel, Daniel ;
Wardelmann, Eva .
ANNALS OF ONCOLOGY, 2014, 25 :113-123
[6]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132
[7]   Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy [J].
Cozzi, Luca ;
Dinapoli, Nicola ;
Fogliata, Antonella ;
Hsu, Wei-Chung ;
Reggiori, Giacomo ;
Lobefalo, Francesca ;
Kirienko, Margarita ;
Sollini, Martina ;
Franceschini, Davide ;
Comito, Tiziana ;
Franzese, Ciro ;
Scorsetti, Marta ;
Wang, Po-Ming .
BMC CANCER, 2017, 17
[8]   T2-based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy. [J].
Crombe, Amandine ;
Perier, Cynthia ;
Kind, Michele ;
De Senneville, Baudouin Denis ;
Le Loarer, Francois ;
Italiano, Antoine ;
Buy, Xavier ;
Saut, Olivier .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (02) :497-510
[9]   Gray-level discretization impacts reproducible MRI radiomics texture features [J].
Duron, Loic ;
Balvay, Daniel ;
Perre, Saskia Vande ;
Bouchouicha, Afef ;
Savatovsky, Julien ;
Sadik, Jean-Claude ;
Thomassin-Naggara, Isabelle ;
Fournier, Laure ;
Lecler, Augustin .
PLOS ONE, 2019, 14 (03)
[10]   Cardiac SPECT radiomic features repeatability and reproducibility: A multi-scanner phantom study [J].
Edalat-Javid, Mohammad ;
Shiri, Isaac ;
Hajianfar, Ghasem ;
Abdollahi, Hamid ;
Arabi, Hossein ;
Oveisi, Niki ;
Javadian, Mohammad ;
Zafarghandi, Mojtaba Shamsaei ;
Malek, Hadi ;
Bitarafan-Rajabi, Ahmad ;
Oveisi, Mehrdad ;
Zaidi, Habib .
JOURNAL OF NUCLEAR CARDIOLOGY, 2021, 28 (06) :2730-2744