How high is a MoSe2 monolayer?

被引:11
|
作者
Cowie, Megan [1 ]
Plougmann, Rikke [1 ,4 ]
Benkirane, Yacine [1 ]
Schue, Leonard [2 ,3 ]
Schumacher, Zeno [1 ,5 ]
Grutter, Peter [1 ]
机构
[1] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada
[2] Univ Montreal, Dept Chim, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Regrp Quebecois Sur Mat Pointe RQMP, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada
[4] Tech Univ Denmark, Dept Phys, Fysikvej,Bldg 311, DK-2800 Lyngby, Denmark
[5] Swiss Fed Inst Technol, Inst Quantum Elect, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
基金
加拿大自然科学与工程研究理事会;
关键词
molybdenum diselenide (MoSe2); Transition metal dichalcogenides (TMDCs); 2D materials; atomic force microscopy (AFM); photoluminescence spectroscopy (PL); kelvin probe force microscopy (KPFM); Raman spectroscopy; RELIABLE THICKNESS IDENTIFICATION; TRANSITION-METAL DICHALCOGENIDES; FORCE MICROSCOPY; NANOSHEETS; GROWTH; LAYERS; MONO;
D O I
10.1088/1361-6528/ac40bd
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transition metal dichalcogenides (TMDCs) have attracted significant attention for optoelectronic, photovoltaic and photoelectrochemical applications. The properties of TMDCs are highly dependent on the number of stacked atomic layers, which is usually counted post-fabrication, using a combination of optical methods and atomic force microscopy height measurements. Here, we use photoluminescence spectroscopy, Raman spectroscopy, and three different AFM methods to demonstrate significant discrepancies in height measurements of exfoliated MoSe2 flakes on SiO2 depending on the method used. We also highlight the often overlooked effect that electrostatic forces can be misleading when measuring the height of a MoSe2 flake using AFM.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] The interplay between excitons and trions in a monolayer of MoSe2
    Lundt, N.
    Cherotchenko, E.
    Iff, O.
    Fan, X.
    Shen, Y.
    Bigenwald, P.
    Kavokin, A. V.
    Hoefling, S.
    Schneider, C.
    APPLIED PHYSICS LETTERS, 2018, 112 (03)
  • [12] Symmetry regimes for circular photocurrents in monolayer MoSe2
    Quereda, Jorge
    Ghiasi, Talieh S.
    You, Jhih-Shih
    van den Brink, Jeroen
    van Wees, Bart J.
    van der Wal, Caspar H.
    NATURE COMMUNICATIONS, 2018, 9
  • [13] Temperature Dependence of the Dielectric Function of Monolayer MoSe2
    Park, Han Gyeol
    Kim, Tae Jung
    Ullah, Farman
    Van Long Le
    Hoang Tung Nguyen
    Kim, Yong Soo
    Kim, Young Dong
    SCIENTIFIC REPORTS, 2018, 8
  • [14] Initial stage of MBE growth of MoSe2 monolayer
    Wei, Yaxu
    Hu, Chunguang
    Li, Yanning
    Hu, Xiaotang
    Yu, Kaihao
    Sun, Litao
    Hohage, Michael
    Sun, Lidong
    NANOTECHNOLOGY, 2020, 31 (31)
  • [15] Symmetry regimes for circular photocurrents in monolayer MoSe2
    Jorge Quereda
    Talieh S. Ghiasi
    Jhih-Shih You
    Jeroen van den Brink
    Bart J. van Wees
    Caspar H. van der Wal
    Nature Communications, 9
  • [16] MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity
    Yejun Zhang
    Qiufang Gong
    Lun Li
    Hongchao Yang
    Yanguang Li
    Qiangbin Wang
    Nano Research, 2015, 8 : 1108 - 1115
  • [17] Stark Effect in a Heterostructure Based on a MoSe2 Monolayer
    Chernenko A.V.
    Brichkin A.S.
    Golyshkov G.M.
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (02) : 213 - 218
  • [18] MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity
    Zhang, Yejun
    Gong, Qiufang
    Li, Lun
    Yang, Hongchao
    Li, Yanguang
    Wang, Qiangbin
    NANO RESEARCH, 2015, 8 (04) : 1108 - 1115
  • [19] A Shallow Acceptor of Phosphorous Doped in MoSe2 Monolayer
    Xia, Yipu
    Zhang, Junqiu
    Yu, Zhoubin
    Jin, Yuanjun
    Tian, Hao
    Feng, Yue
    Li, Bin
    Ho, Wingkin
    Liu, Chang
    Xu, Hu
    Jin, Chuanhong
    Xie, Maohai
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (01):
  • [20] Thermal transport properties of monolayer MoSe2 with defects
    Ma, Jiang-Jiang
    Zheng, Jing-Jing
    Li, Wei-Dong
    Wang, Dong-Hong
    Wang, Bao-Tian
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (10) : 5832 - 5838