An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers

被引:38
作者
Qi, Feng [1 ,2 ,3 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math, Tongliao 028043, Inner Mongolia, Peoples R China
[3] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300387, Peoples R China
关键词
Explicit formula; Bell number; Lah number; Stirling number of the second kind; derivative; exponential function; Faa di Bruno formula; Bell polynomial;
D O I
10.1007/s00009-015-0655-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the author finds an explicit formula for the Bell numbers in terms of the Lah numbers and the Stirling numbers of the second kind.
引用
收藏
页码:2795 / 2800
页数:6
相关论文
共 50 条
[31]   Explicit Formulas for Special Values of the Bell Polynomials of the Second Kind and for the Euler Numbers and Polynomials [J].
Feng Qi ;
Bai-Ni Guo .
Mediterranean Journal of Mathematics, 2017, 14
[32]   Explicit formulae for Bernoulli numbers [J].
Li, Nadia N. ;
Chu, Wenchang .
AIMS MATHEMATICS, 2024, 9 (10) :28170-28194
[33]   Two explicit formulas for the generalized Motzkin numbers [J].
Zhao, Jiao-Lian ;
Qi, Feng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[34]   On the sum of the Lah numbers and zeros of the Kummer confluent hypergeometric function [J].
Qi, Feng ;
Guo, Bai-Ni .
ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2018, 10 (01) :125-133
[35]   NEW FAMILY OF JACOBI-STIRLING NUMBERS [J].
Cakic, Nenad P. ;
El-Desouky, Beih. S. ;
Gomaa, Rabab. S. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2023, 17 (02) :538-547
[36]   DIAGONAL RECURRENCE RELATIONS FOR THE STIRLING NUMBERS OF THE FIRST KIND [J].
Qi, Feng .
CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2016, 11 (01) :22-30
[37]   Congruences for Stirling Numbers of the Second Kind Modulo 5 [J].
Zhao, Jianrong .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) :795-800
[38]   On the Uniqueness Conjecture for the Maximum Stirling Numbers of the Second Kind [J].
José A. Adell ;
Daniel Cárdenas-Morales .
Results in Mathematics, 2021, 76
[39]   On the Uniqueness Conjecture for the Maximum Stirling Numbers of the Second Kind [J].
Adell, Jose A. ;
Cardenas-Morales, Daniel .
RESULTS IN MATHEMATICS, 2021, 76 (02)
[40]   Divisibility by 2 of Stirling numbers of the second kind and their differences [J].
Zhao, Jianrong ;
Hong, Shaofang ;
Zhao, Wei .
JOURNAL OF NUMBER THEORY, 2014, 140 :324-348