An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers

被引:38
作者
Qi, Feng [1 ,2 ,3 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math, Tongliao 028043, Inner Mongolia, Peoples R China
[3] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300387, Peoples R China
关键词
Explicit formula; Bell number; Lah number; Stirling number of the second kind; derivative; exponential function; Faa di Bruno formula; Bell polynomial;
D O I
10.1007/s00009-015-0655-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the author finds an explicit formula for the Bell numbers in terms of the Lah numbers and the Stirling numbers of the second kind.
引用
收藏
页码:2795 / 2800
页数:6
相关论文
共 50 条
  • [21] Some inequalities for the Bell numbers
    Feng Qi
    Proceedings - Mathematical Sciences, 2017, 127 : 551 - 564
  • [22] Stirling numbers of forests and cycles
    Galvin, David
    Do Trong Thanh
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01)
  • [23] Mixed restricted Stirling numbers
    Barati, S.
    Benyi, B.
    Jafarzadeh, A.
    Yaqubi, D.
    ACTA MATHEMATICA HUNGARICA, 2019, 158 (01) : 159 - 172
  • [24] Mixed restricted Stirling numbers
    S. Barati
    B. Bényi
    A. Jafarzadeh
    D. Yaqubi
    Acta Mathematica Hungarica, 2019, 158 : 159 - 172
  • [25] Matchings in complete bipartite graphs and the r-Lah numbers
    Gábor Nyul
    Gabriella Rácz
    Czechoslovak Mathematical Journal, 2021, 71 : 947 - 959
  • [26] A further generalization of the Catalan numbers and its explicit formula and integral representation
    Li, Wen -Hui
    Kouba, Omran
    Kaddoura, Issam
    Qi, Feng
    FILOMAT, 2023, 37 (19) : 6505 - 6524
  • [27] Bell Numbers of Complete Multipartite Graphs
    Allagan, Julian
    Serkan, Christopher
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2016, 24 (02) : 234 - 242
  • [28] Disjoint convolution sums of Stirling numbers
    Chu, Wenchang
    MATHEMATICAL COMMUNICATIONS, 2021, 26 (02) : 239 - 251
  • [29] A Generalized Recurrence for Bell Numbers
    Spivey, Michael Z.
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (02)
  • [30] Explicit Formulas for Special Values of the Bell Polynomials of the Second Kind and for the Euler Numbers and Polynomials
    Qi, Feng
    Guo, Bai-Ni
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)