An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers

被引:38
作者
Qi, Feng [1 ,2 ,3 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math, Tongliao 028043, Inner Mongolia, Peoples R China
[3] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300387, Peoples R China
关键词
Explicit formula; Bell number; Lah number; Stirling number of the second kind; derivative; exponential function; Faa di Bruno formula; Bell polynomial;
D O I
10.1007/s00009-015-0655-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the author finds an explicit formula for the Bell numbers in terms of the Lah numbers and the Stirling numbers of the second kind.
引用
收藏
页码:2795 / 2800
页数:6
相关论文
共 50 条
[1]   An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers [J].
Feng Qi .
Mediterranean Journal of Mathematics, 2016, 13 :2795-2800
[2]   Some identities and an explicit formula for Bernoulli and Stirling numbers [J].
Guo, Bai-Ni ;
Qi, Feng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :568-579
[3]   AN EXPLICIT FORMULA FOR BERNOULLI POLYNOMIALS IN TERMS OF r-STIRLING NUMBERS OF THE SECOND KIND [J].
Guo, Bai-Ni ;
Mezo, Istavan ;
Qi, Feng .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) :1919-1923
[4]   The Multivariate Lah and Stirling Numbers [J].
Belkhir, Amine .
JOURNAL OF INTEGER SEQUENCES, 2020, 23 (04)
[5]   Recurrences of Stirling and Lah numbers via second kind Bell polynomials [J].
Qi, Feng ;
Natalini, Pierpaolo ;
Ricci, Paolo Emilio .
DISCRETE MATHEMATICS LETTERS, 2020, 3 :31-36
[6]   Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind [J].
Guo, Bai-Ni ;
Qi, Feng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 :251-257
[7]   A NEW FORMULA FOR THE BERNOULLI NUMBERS OF THE SECOND KIND IN TERMS OF THE STIRLING NUMBERS OF THE FIRST KIND [J].
Qi, Feng .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 100 (114) :243-249
[8]   CLOSED FORMULAS FOR SPECIAL BELL POLYNOMIALS BY STIRLING NUMBERS AND ASSOCIATE STIRLING NUMBERS [J].
Qi, Feng ;
Lim, Dongkyu .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2020, 108 (122) :131-136
[9]   The Generalized Stirling and Bell Numbers Revisited [J].
Mansour, Toufik ;
Schork, Matthias ;
Shattuck, Mark .
JOURNAL OF INTEGER SEQUENCES, 2012, 15 (08)
[10]   Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers [J].
Qi, Feng ;
Shi, Xiao-Ting ;
Liu, Fang-Fang .
ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) :282-297