Numerical research on seismic response characteristics of shallow buried rectangular underground structure

被引:103
作者
Xu, Zigang [1 ]
Du, Xiuli [1 ]
Xu, Chengshun [1 ]
Hao, Hong [2 ]
Bi, Kaiming [1 ,2 ]
Jiang, Jiawei [1 ]
机构
[1] Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
[2] Curtin Univ, Ctr Infrastruct Monitoring & Protect, Bentley, WA 6102, Australia
基金
中国国家自然科学基金;
关键词
Rectangular underground structure; Seismic responses; Earthquake load condition; Structure inertia; Soil inertia; Flexibility ratio; Soil-structure interface; SHAKING TABLE TEST; SUBWAY STATION; TUNNELS; CENTRIFUGE; DEFORMATIONS; MECHANISM; FAILURE; DAMAGE;
D O I
10.1016/j.soildyn.2018.10.030
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The seismic response characteristics of underground structures are very different from those of aboveground structures. Great efforts have been made in investigating the influence factors on the seismic responses of rectangular underground structures, while the theoretical analyses and comprehensive understandings remain insufficient in the current research. In order to shed light on the seismic response characteristics of the shallow buried rectangular underground structure, an extended parametric study, based on a real underground structure, the Daikai subway station in Japan was conducted in the present paper. In particular, a two-dimensional soil structure system was adopted for the dynamic time-history analysis. The equivalent linear model was used to consider the nonlinear behaviors of the soil elements, and the elastic model was used to simulate the structure elements. A variety of critical factors that may significantly affect the seismic responses, such as: (i) earthquake load condition, (ii) structure inertia effect, (iii) soil inertia effect, (iv) soil-structure relative stiffness, and (v) soil structure interface properties were comprehensively investigated in this study. The variations of the horizontal relative deformation between the top and bottom slabs of the structure and the internal forces of four representative sections that were most concerned in seismic design were calculated and compared in different cases, and the soil pressures and shear forces around the structure were also systematically discussed. The numerical results indicated that the seismic responses were obviously affected by the soil inertia effect and soil structure relative stiffness, and more attentions should be paid to these critical factors during the seismic design of the underground structure. The presented results can lead to better understandings on the seismic responses of the shallow buried rectangular underground structure and can provide some improvements to the existing simplified methods and guide the seismic design of the underground structure.
引用
收藏
页码:242 / 252
页数:11
相关论文
共 59 条
  • [21] Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation
    Gazetas, G
    Psarropoulos, PN
    Anastasopoulos, I
    Gerolymos, N
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2004, 24 (07) : 537 - 550
  • [22] GB, 2014, GB50909-2014
  • [23] Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures
    Hashash, YMA
    Park, D
    Yao, JIC
    [J]. TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2005, 20 (05) : 435 - 441
  • [24] Hibbitt Karlsson, 2001, ABAQUS EXPLICIT USER
  • [25] Load transfer mechanisms between underground structure and surrounding ground:: Evaluation of the failure of the Daikai Station
    Huo, H
    Bobet, A
    Fernández, G
    Ramírez, J
    [J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2005, 131 (12) : 1522 - 1533
  • [26] Seismic Performance of Underground Reservoir Structures: Insight from Centrifuge Modeling on the Influence of Backfill Soil Type and Geometry
    Hushmand, A.
    Dashti, S.
    Davis, C.
    Hushmand, B.
    McCartney, J. S.
    Hu, J.
    Lee, Y.
    [J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2016, 142 (11)
  • [27] A centrifuge study of the influence of site response, relative stiffness, and kinematic constraints on the seismic performance of buried reservoir structures
    Hushmand, A.
    Dashti, S.
    Davis, C.
    McCartney, J. S.
    Hushmand, B.
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2016, 88 : 427 - 438
  • [28] Seismic Performance of Underground Reservoir Structures: Insight from Centrifuge Modeling on the Influence of Structure Stiffness
    Hushmand, A.
    Dashti, S.
    Davis, C.
    Hushmand, B.
    Zhang, M.
    Ghayoomi, M.
    McCartney, J. S.
    Lee, Y.
    Hu, J.
    [J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2016, 142 (07)
  • [29] Iida H., 1996, SOILS FOUND, P283, DOI [10.3208/sandf.36.Special-283, DOI 10.3208/SANDF.36.SPECIAL-283]
  • [30] ISO (International Organization for Standardization), 2005, 23469 ISO