Singularities of spacelike constant mean curvature surfaces in Lorentz-Minkowski space

被引:18
作者
Brander, David [1 ]
机构
[1] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
关键词
MAXIMAL SURFACES; BJORLING PROBLEM; REPRESENTATION;
D O I
10.1017/S0305004111000077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study singularities of spacelike, constant (non-zero) mean curvature (CMC) surfaces in the Lorentz-Minkowski 3-space L-3. We show how to solve the singular Bjorling problem for such surfaces, which is stated as follows: given a real analytic null-curve f(0)(x), and a real analytic null vector field v(x) parallel to the tangent field of f(0), find a conformally parameterized (generalized) CMC H surface in L-3 which contains this curve as a singular set and such that the partial derivatives f(x) and f(y) are given by df(0)/dx and v along the curve. Within the class of generalized surfaces considered, the solution is unique and we give a formula for the generalized Weierstrass data for this surface. This gives a framework for studying the singularities of non-maximal CMC surfaces in L-3. We use this to find the Bjorling data - and holomorphic potentials - which characterize cuspidal edge, swallowtail and cuspidal cross cap singularities.
引用
收藏
页码:527 / 556
页数:30
相关论文
共 20 条
[1]   THE GAUSS MAP AND SPACELIKE SURFACES WITH PRESCRIBED MEAN-CURVATURE IN MINKOWSKI 3-SPACE [J].
AKUTAGAWA, K ;
NISHIKAWA, S .
TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (01) :67-82
[2]   Bjorling problem for maximal surfaces in Lorentz-Minkowski space [J].
Alías, LJ ;
Chaves, RMB ;
Mira, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 :289-316
[3]  
Arnold V. I., 1990, MATH APPL SOVIET SER, V62
[4]  
Brander D, 2010, COMMUN ANAL GEOM, V18, P171
[5]   Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods [J].
Brander, David ;
Rossman, Wayne ;
Schmitt, Nicholas .
ADVANCES IN MATHEMATICS, 2010, 223 (03) :949-986
[6]  
Dierkes U., 1992, GRUNDLEHREN MATH WIS, V295
[7]   Weierstrass type representation of harmonic maps into symmetric spaces [J].
Dorfmeister, J ;
Pedit, F ;
Wu, H .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1998, 6 (04) :633-668
[8]   The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space [J].
Fernández, I ;
López, FJ ;
Souam, R .
MATHEMATISCHE ANNALEN, 2005, 332 (03) :605-643
[9]  
Fernández I, 2007, MATH Z, V256, P573, DOI 10.1007/s00209-006-0087-y
[10]  
Fernández I, 2007, MANUSCRIPTA MATH, V122, P439, DOI 10.1007/s00229-007-0079-1