The Theta divisor of a jacobian variety and the decoding of geometric Goppa Codes

被引:0
作者
Henocq, T
Rotillon, D
机构
[1] Laboratoire d'Algèbre, UFR MIG, Université Paul Sabatier
关键词
D O I
10.1016/0022-4049(95)00008-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Pellikaan (1989) has given a noneffective maximal decoding algorithm of a geometric code. To this end, our purpose is the determination of the minimal integer s, such that the maps psi(g-k)(s) (k=1, 2), defined in Pellikaan (1989), are subjective. Then, on the one hand, we show that the theta divisor of the jacobian variety of an algebraic curve provides partial answers. On the other hand, for the Klein quartic defined over F-8, we determine explicitly divisors of degree 8 which allows us to decode up to 5 errors.
引用
收藏
页码:13 / 28
页数:16
相关论文
共 16 条
[1]  
CARBONNE P, 1993, CISM COURSES LECT, V339, P231
[2]  
Duursma I., 1993, Decoding codes from curves and cyclic codes
[3]   MAJORITY COSET DECODING [J].
DUURSMA, IM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :1067-1070
[4]  
EHRHARD D, 1993, IEEE T INFORM THEORY, V39, P743, DOI 10.1109/18.256485
[5]  
EHRHARD D, 1991, THESIS U DUSSELDORF
[6]  
FENG GL, 1993, IEEE T INFORM THEORY, V39, P1
[7]  
Fulton W., 1969, MATH LECT NOTES SER
[8]  
GOPPA VD, 1991, MATH APPL, V24
[9]  
HANSEN JP, 1987, IEEE T INFORM THEORY, V33
[10]  
KURIBAYASHI I, 1982, TSUKUBA J MATH, V6, P271