STARLIKE FUNCTIONS ASSOCIATED WITH A PETAL SHAPED DOMAIN

被引:19
作者
Arora, Kush [1 ]
Kumar, S. Sivaprasad [2 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Delhi Technol Univ, Dept Appl Math, Delhi 110042, India
关键词
convex function; petal shaped domain; radius problems; Starlike function; RADIUS PROBLEMS; LEMNISCATE;
D O I
10.4134/BKMS.b210602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish some radius results and inclusion relations for starlike functions associated with a petal-shaped domain.
引用
收藏
页码:993 / 1010
页数:18
相关论文
共 23 条
[1]   BOUNDS FOR RADII OF CONVEXITY OF SOME q-BESSEL FUNCTIONS [J].
Aktas, Ibrahim ;
Orhan, Halit .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) :355-369
[2]   Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane [J].
Ali, Rosihan M. ;
Jain, Naveen K. ;
Ravichandran, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) :6557-6565
[3]  
[Anonymous], 1997, Complex Variables Theory Appl.
[4]   Starlike Functions Associated with Cosine Functions [J].
Bano, Khadija ;
Raza, Mohsan .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (05) :1513-1532
[5]   Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate [J].
Ch, Nak Eun ;
Kumar, Sushil ;
Kumar, Virendra ;
Ravichandran, V .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) :1380-1399
[6]   Radius Problems for Starlike Functions Associated with the Sine Function [J].
Cho, N. E. ;
Kumar, V. ;
Kumar, S. S. ;
Ravichandran, V. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (01) :213-232
[7]   Starlike Functions Related to the Bell Numbers [J].
Cho, Nak Eun ;
Kumar, Sushil ;
Kumar, Virendra ;
Ravichandran, V ;
Srivastava, H. M. .
SYMMETRY-BASEL, 2019, 11 (02)
[8]   Certain Class of Starlike Functions Associated with Modified Sigmoid Function [J].
Goel, Priyanka ;
Kumar, S. Sivaprasad .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) :957-991
[9]  
Janowski W., 1971, Ann. Polon. Math, V23, P159, DOI [10.4064/ap-23-2-159-177, DOI 10.4064/AP-23-2-159-177]
[10]   Conic regions and k-uniform convexity [J].
Kanas, S ;
Wisniowska, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) :327-336