New identities involving Bernoulli and Euler polynomials

被引:39
作者
Pan, H [1 ]
Sun, ZW [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
美国国家科学基金会;
关键词
combinatorial identity; Bernoulli polynomial; Euler polynomial;
D O I
10.1016/j.jcta.2005.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki's and Matiyasevich's identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:156 / 175
页数:20
相关论文
共 14 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1994, FDN COMPUTER SCI
[3]   Sums of products of Bernoulli numbers [J].
Dilcher, K .
JOURNAL OF NUMBER THEORY, 1996, 60 (01) :23-41
[4]  
DUNNE GV, 2004, ARXIVMATHNT0406610
[5]   Hedge integrals and Gromov-Witten theory [J].
Faber, C ;
Pandharipande, R .
INVENTIONES MATHEMATICAE, 2000, 139 (01) :173-199
[6]   On Miki's identity for Bernoulli numbers [J].
Gessel, IM .
JOURNAL OF NUMBER THEORY, 2005, 110 (01) :75-82
[7]  
MATIYASEVICH Y, 1997, IDENTITIES BERNOULLI
[8]   RELATION BETWEEN BERNOULLI NUMBERS [J].
MIKI, H .
JOURNAL OF NUMBER THEORY, 1978, 10 (03) :297-302
[9]  
Rosen K.H., 2000, Handbook of Discrete and Combinatorial Mathematics
[10]  
Shiratani K., 1982, Mem. Fac. Sci. Kyushu Univ. Ser. A, V36, P73, DOI [10.2206/kyushumfs.36.73, DOI 10.2206/KYUSHUMFS.36.73]