Trigonometric series with noninteger harmonics

被引:2
作者
Gabdullin, Mikhail R. [1 ]
机构
[1] Steklov Math Inst, Gubkina str, 8, Moscow 119991, Russia
关键词
Trigonometric series; Uniform convergence; Exponential sums; UNIFORM-CONVERGENCE;
D O I
10.1016/j.jmaa.2021.125792
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {c(k)} be a nonincreasing sequence of positive numbers (more general classes of sequences are also considered), and alpha > 0 be not an integer. We find necessary and sufficient conditions for the uniform convergence of the series Sigma(k) c(k) sin k(alpha)x and Sigma(k) c(k) cos k(alpha)x on the real line and its bounded subsets. (c) 2021 Published by Elsevier Inc.
引用
收藏
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 1974, Pure Appl. Math.
[2]  
Besicovitch A.S., 1940, J. Lond. Math. Soc., V15, P3
[3]  
Chaundy TW, 1916, P LOND MATH SOC, V15, P214
[4]  
Goluzina M.G., 1992, SELECTED PROBLEMS RE
[5]   A new kth derivative estimate for exponential sums via Vinogradov's mean value [J].
Heath-Brown, D. R. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) :88-103
[6]  
Iwaniec H., 2004, C PUBL AM MATH SOC, V53
[7]  
Keska S., 2019, J FUNCT SPACES, P1
[8]   On large values of the Riemann zeta-function on short segments of the critical line [J].
Korolev, Maxim A. .
ACTA ARITHMETICA, 2014, 166 (04) :349-390
[9]   On the uniform convergence and boundedness of a certain class of sine series [J].
Leindler L. .
Analysis Mathematica, 2001, 27 (4) :279-285
[10]  
Murty M.R., 2008, GRADUATE TEXTS MATH