Double Lerch series and their functional relations

被引:11
作者
Nakamura, Takashi [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Double Lerch series; double Dirichlet series; functional relation; alternating analogues of Tornheim's double series; double L-values;
D O I
10.1007/s00010-007-2921-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show an integral representation and a functional relation for double Lerch series. We also show a functional relation for double Dirichlet series. By this functional relation for double Lerch series, we obtain explicit formulas for special values of alternating analogues of Tornheim's double series and double L-values.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 17 条
[1]  
Apostol TM., 1998, INTRO ANAL NUMBER TH
[2]   On multiple L-values [J].
Arakawa, T ;
Kaneko, M .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (04) :967-991
[3]   The evaluation of Tomheim double sums, Part 1 [J].
Espinosa, O ;
Moll, VH .
JOURNAL OF NUMBER THEORY, 2006, 116 (01) :200-229
[4]  
Huard JG, 1996, ACTA ARITH, V75, P105
[5]  
Matsumoto K, 2002, NUMBER THEORY FOR THE MILLENNIUM II, P417
[6]  
Mordell LJ., 1958, J. Lond. Math. Soc, V33, P368, DOI [10.1112/jlms/s1-33.3.368, DOI 10.1112/JLMS/S1-33.3.368]
[7]   A functional relation for the Tornheim double zeta function [J].
Nakamura, Takashi .
ACTA ARITHMETICA, 2006, 125 (03) :257-263
[8]   ON SOME INFINITE SERIES OF MORDELL,L.J. AND THEIR ANALOGS [J].
SUBBARAO, MV ;
SITARAMACHANDRARAO, R .
PACIFIC JOURNAL OF MATHEMATICS, 1985, 119 (01) :245-255
[9]   HARMONIC DOUBLE SERIES [J].
TORNHEIM, L .
AMERICAN JOURNAL OF MATHEMATICS, 1950, 72 (02) :303-314
[10]  
Tsumura H, 2004, MATH COMPUT, V73, P251, DOI 10.1090/S0025-5718-03-01572-2