Pixel-level image fusion with simultaneous orthogonal matching pursuit

被引:296
作者
Yang, Bin [1 ]
Li, Shutao [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
关键词
Multi-sensor fusion; Image fusion; Simultaneous orthogonal matching pursuit; Sparse representation; Multiscale transform; K-SVD; SPARSE; PERFORMANCE; ALGORITHMS; SCHEMES;
D O I
10.1016/j.inffus.2010.04.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pixel-level image fusion integrates the information from multiple images of one scene to get an informative image which is more suitable for human visual perception or further image-processing. Sparse representation is a new signal representation theory which explores the sparseness of natural signals. Comparing to the traditional multiscale transform coefficients, the sparse representation coefficients can more accurately represent the image information. Thus, this paper proposes a novel image fusion scheme using the signal sparse representation theory. Because image fusion depends on local information of source images, we conduct the sparse representation on overlapping patches instead of the whole image, where a small size of dictionary is needed. In addition, the simultaneous orthogonal matching pursuit technique is introduced to guarantee that different source images are sparsely decomposed into the same subset of dictionary bases, which is the key to image fusion. The proposed method is tested on several categories of images and compared with some popular image fusion methods. The experimental results show that the proposed method can provide superior fused image in terms of several quantitative fusion evaluation indexes. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 19
页数:10
相关论文
共 44 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2008, 2008 IEEE C COMP VIS, DOI DOI 10.1109/CVPR.2008.4587652
[3]  
[Anonymous], 1995, TRANSLATION INVARIAN
[4]  
Beaulieu M, 1989, P INT GEOSC REM SENS, V6, P4032
[5]  
BLANC P, 1998, P 2 C FUS EARTH DAT, P67
[6]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[7]   Compression of facial images using the K-SVD algorithm [J].
Bryt, Ori ;
Elad, Michael .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2008, 19 (04) :270-282
[8]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[9]  
Chen T, 2005, INT GEOSCI REMOTE SE, P1150
[10]   The nonsubsampled contourlet transform: Theory, design, and applications [J].
da Cunha, Arthur L. ;
Zhou, Jianping ;
Do, Minh N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (10) :3089-3101