Emergent Elements of Inspiratory Rhythmogenesis: Network Synchronization and Synchrony Propagation

被引:46
作者
Ashhad, Sufyan [1 ]
Feldman, Jack L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Neurobiol, Box 951763, Los Angeles, CA 90095 USA
关键词
PRE-BOTZINGER COMPLEX; RESPIRATORY RHYTHM GENERATION; HIGH-FREQUENCY OSCILLATIONS; PERSISTENT SODIUM CURRENT; PREBOTZINGER COMPLEX; PACEMAKER NEURONS; NEURAL MICROCIRCUITS; SYNAPTIC INHIBITION; EXPIRATORY NEURONS; PYRAMIDAL NEURONS;
D O I
10.1016/j.neuron.2020.02.005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We assessed the mechanism of mammalian breathing rhythmogenesis in the preBotzinger complex (preBotC) in vitro, where experimental tests remain inconsistent with hypotheses of canonical rhythmogenic cellular or synaptic mechanisms, i.e., pacemaker neurons or inhibition. Under rhythmic conditions, in each cycle, an inspiratory burst emerges as (presumptive) preBotC rhythmogenic neurons transition from aperiodic uncorrelated population spike activity to become increasingly synchronized during preinspiration (for similar to 50-500 ms), which can trigger inspiratory bursts that propagate to motoneurons. In nonrhythmic conditions, antagonizing GABA(A) receptors can initiate this synchronization while inducing a higher conductance state in nonrhythmogenic preBotC output neurons. Our analyses uncover salient features of preBotC network dynamics where inspiratory bursts arise when and only when the preBotC rhythmogenic subpopulation strongly synchronizes to drive output neurons. Furthermore, downstream propagation of preBotC network activity, ultimately to motoneurons, is dependent on the strength of input synchrony onto preBotC output neurons exemplifying synchronous propagation of network activity.
引用
收藏
页码:482 / +
页数:20
相关论文
共 90 条
  • [61] Parkis MA, 2003, J NEUROSCI, V23, P8152
  • [62] Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model
    Phillips, Ryan S.
    John, Tibin T.
    Koizumi, Hidehiko
    Molkov, Yaroslav I.
    Smith, Jeffrey C.
    [J]. ELIFE, 2019, 8
  • [63] Physiological and morphological properties of Dbx1-derived respiratory neurons in the pre-Botzinger complex of neonatal mice
    Picardo, Maria Cristina D.
    Weragalaarachchi, Krishanthi T. H.
    Akins, Victoria T.
    Del Negro, Christopher A.
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2013, 591 (10): : 2687 - 2703
  • [64] Impact of Neuronal Properties on Network Coding: Roles of Spike Initiation Dynamics and Robust Synchrony Transfer
    Ratte, Stephanie
    Hong, Sungho
    De Schutter, Erik
    Prescott, Steven A.
    [J]. NEURON, 2013, 78 (05) : 758 - 772
  • [65] Prebotzinger complex and pacemaker neurons: Hypothesized site and kernel for respiratory rhythm generation
    Rekling, JC
    Feldman, JL
    [J]. ANNUAL REVIEW OF PHYSIOLOGY, 1998, 60 : 385 - 405
  • [66] Rekling JC, 2000, J NEUROSCI, V20, part. no.
  • [67] Identification of the pre-Botzinger complex inspiratory center in calibrated "sandwich" slices from newborn mice with fluorescent Dbx1 interneurons
    Ruangkittisakul, Araya
    Kottick, Andrew
    Picardo, Maria C. D.
    Ballanyi, Klaus
    Del Negro, Christopher A.
    [J]. PHYSIOLOGICAL REPORTS, 2014, 2 (08):
  • [68] Rudolph M, 2003, J NEUROSCI, V23, P2466
  • [69] CONCURRENT FAST AND SLOW SYNCHRONIZED EFFERENT PHRENIC ACTIVITIES IN TIME AND FREQUENCY-DOMAIN
    SCHMID, K
    BOHMER, G
    WEICHEL, T
    [J]. BRAIN RESEARCH, 1990, 528 (01) : 1 - 11
  • [70] Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Botzinger complex: Differential roles of glycinergic and GABAergic neural transmission
    Shao, XM
    Feldman, JL
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 1997, 77 (04) : 1853 - 1860