Moving Average Market Timing in European Energy Markets: Production Versus Emissions

被引:8
作者
Chang, Chia-Lin [1 ]
Ilomaki, Jukka [2 ]
Laurila, Hannu [2 ]
McAleer, Michael [3 ,4 ,5 ,6 ,7 ,8 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Econ, Dept Finance, Taichung 402, Taiwan
[2] Univ Tampere, Fac Management, Tampere 33014, Finland
[3] Asia Univ, Dept Finance, Taichung 41354, Taiwan
[4] Univ Sydney, Discipline Business Analyt, Business Sch, Sydney, NSW 2006, Australia
[5] Erasmus Univ, Erasmus Sch Econ, Econometr Inst, NL-3000 Rotterdam, Netherlands
[6] Univ Complutense Madrid, Dept Econ Anal, Madrid 28040, Spain
[7] Univ Complutense Madrid, ICAE, Madrid 28040, Spain
[8] Yokohama Natl Univ, Inst Adv Sci, Yokohama, Kanagawa 2408501, Japan
基金
澳大利亚研究理事会;
关键词
stochastic trends; returns predictability; moving average; market timing; energy markets; TIME-SERIES; CARBON MARKET; OIL PRICES; EFFICIENCY; EQUILIBRIUM; PERFORMANCE; PORTFOLIOS; MOMENTUM; ASSETS;
D O I
10.3390/en11123281
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper searches for stochastic trends and returns predictability in key energy asset markets in Europe over the last decade. The financial assets include Intercontinental Exchange Futures Europe (ICE-ECX) carbon emission allowances (the main driver of interest), European Energy Exchange (EEX) Coal ARA futures and ICE Brent oil futures (reflecting the two largest energy sources in Europe), Stoxx600 Europe Oil and Gas Index (the main energy stock index in Europe), EEX Power Futures (representing electricity), and Stoxx600 Europe Renewable Energy index (representing the sunrise energy industry). This paper finds that the Moving Average (MA) technique beats random timing for carbon emission allowances, coal, and renewable energy. In these asset markets, there seems to be significant returns predictability of stochastic trends in prices. The results are mixed for Brent oil, and there are no predictable trends for the Oil and Gas index. Stochastic trends are also missing in the electricity market as there is an ARFIMA-FIGARCH process in the day-ahead power prices. The empirical results are interesting for several reasons. We identified the data generating process in EU electricity prices as fractionally integrated (0.5), with a fractionally integrated Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) process in the residual. This is a novel finding. The order of integration of order 0.5 implies that the process is not stationary but less non-stationary than the non-stationary I(1) process, and that the process has long memory. This is probably because electricity cannot be stored. Returns predictability with MA rules requires stochastic trends in price series, indicating that the asset prices should obey the I(1) process, that is, to facilitate long run returns predictability. However, all the other price series tested in the paper are I(1)-processes, so that their returns series are stationary. The empirical results are important because they give a simple answer to the following question: When are MA rules useful? The answer is that, if significant stochastic trends develop in prices, long run returns are predictable, and market timing performs better than does random timing.
引用
收藏
页数:24
相关论文
共 54 条
[1]   Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS [J].
Arouri, Mohamed El Hedi ;
Jawadi, Fredj ;
Nguyen, Duc Khuong .
ECONOMIC MODELLING, 2012, 29 (03) :884-892
[2]   Fractionally integrated generalized autoregressive conditional heteroskedasticity [J].
Baillie, RT ;
Bollerslev, T ;
Mikkelsen, HO .
JOURNAL OF ECONOMETRICS, 1996, 74 (01) :3-30
[3]   Modeling the price dynamics of CO2 emission allowances [J].
Benz, Eva ;
Trueck, Stefan .
ENERGY ECONOMICS, 2009, 31 (01) :4-15
[4]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[5]  
Box GEP., 1976, TIME SERIES ANAL FOR
[6]   The initial impact of EU ETS verification events on stock prices [J].
Brouwers, Roel ;
Schoubben, Frederiek ;
Van Hulle, Cynthia ;
Van Uytbergen, Steve .
ENERGY POLICY, 2016, 94 :138-149
[7]   An analysis of the decline of electricity spot prices in Europe: Who is to blame? [J].
Bublitz, Andreas ;
Keles, Dogan ;
Fichtner, Wolf .
ENERGY POLICY, 2017, 107 :323-336
[8]   Profiting from Regulation: Evidence from the European Carbon Market [J].
Bushnell, James B. ;
Chong, Howard ;
Mansur, Erin T. .
AMERICAN ECONOMIC JOURNAL-ECONOMIC POLICY, 2013, 5 (04) :78-106
[9]   Long Run Returns Predictability and Volatility with Moving Averages [J].
Chang, Chia-Lin ;
Ilomaki, Jukka ;
Laurila, Hannu ;
McAleer, Michael .
RISKS, 2018, 6 (04)
[10]   Market efficiency in the European carbon markets [J].
Charles, Amelie ;
Darne, Olivier ;
Fouilloux, Jessica .
ENERGY POLICY, 2013, 60 :785-792