Self-Referential Quality Diversity Through Differential Map-Elites

被引:5
作者
Choi, Tae Jong [1 ]
Togelius, Julian [2 ]
机构
[1] Kyungil Univ, Gyongsan, South Korea
[2] NYU, Brooklyn, NY 11201 USA
来源
PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21) | 2021年
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Artificial intelligence; Evolutionary algorithms; Quality-diversity algorithms; Numerical optimization;
D O I
10.1145/3449639.3459383
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential MAP-Elites is a novel algorithm that combines the illumination capacity of CVT-MAP-Elites with the continuous-space optimization capacity of Differential Evolution. The algorithm is motivated by observations that illumination algorithms, and quality-diversity algorithms in general, offer qualitatively new capabilities and applications for evolutionary computation yet are in their original versions relatively unsophisticated optimizers. The basic Differential MAP-Elites algorithm, introduced for the first time here, is relatively simple in that it simply combines the operators from Differential Evolution with the map structure of CVT-MAP-Elites. Experiments based on 25 numerical optimization problems suggest that Differential MAP-Elites clearly outperforms CVT-MAP-Elites, finding better-quality and more diverse solutions.
引用
收藏
页码:502 / 509
页数:8
相关论文
共 24 条
[1]  
Alvarez A, 2019, IEEE CONF COMPU INTE, DOI 10.1109/cig.2019.8848022
[2]   Innovation Engines: Automated Creativity and Improved Stochastic Optimization via Deep Learning [J].
Anh Nguyen ;
Yosinski, Jason ;
Clune, Jeff .
GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, :959-966
[3]   Robots that can adapt like animals [J].
Cully, Antoine ;
Clune, Jeff ;
Tarapore, Danesh ;
Mouret, Jean-Baptiste .
NATURE, 2015, 521 (7553) :503-U476
[4]   Recent advances in differential evolution - An updated survey [J].
Das, Swagatam ;
Mullick, Sankha Subhra ;
Suganthan, P. N. .
SWARM AND EVOLUTIONARY COMPUTATION, 2016, 27 :1-30
[5]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[6]   Covariance Matrix Adaptation for the Rapid Illumination of Behavior Space [J].
Fontaine, Matthew C. ;
Togelius, Julian ;
Nikolaidis, Stefanos ;
Hoover, Amy K. .
GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, :94-102
[7]   Mapping Hearthstone Deck Spaces through MAP-Elites with Sliding Boundaries [J].
Fontaine, Matthew C. ;
Lee, Scott ;
Soros, L. B. ;
Silva, Fernando De Mesentier ;
Togelius, Julian ;
Hoover, Amy K. .
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, :161-169
[8]  
Gravina D, 2019, IEEE CONF COMPU INTE, DOI 10.1109/cig.2019.8848053
[9]   Surprise Search: Beyond Objectives and Novelty [J].
Gravina, Daniele ;
Liapis, Antonios ;
Yannakakis, Georgios N. .
GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, :677-684
[10]   Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations [J].
Ju, L ;
Du, Q ;
Gunzburger, M .
PARALLEL COMPUTING, 2002, 28 (10) :1477-1500