Adiabatic law for self-focusing of optical beams

被引:30
作者
Fibich, G
机构
[1] Department of Mathematics, Univ. of California, Los Angeles, Los Angeles
关键词
D O I
10.1364/OL.21.001735
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An adiabatic approach is used to derive a new law for self-focusing in the nonlinear Schrodinger equation that is valid from the early stages of self-focusing until the blowup point. The adiabatic law leads to an analytical formula for the location of the blowup point and can be used to estimate the effects of various small perturbations on self-focusing. The results of the analysis are confirmed by numerical simulations. (C) 1996 Optical Society of America
引用
收藏
页码:1735 / 1737
页数:3
相关论文
共 16 条
[1]  
AKHMANOV SA, 1966, ZH EKSP TEOR FIZ, V23, P1025
[2]  
COOPER F, 1992, PHYS LETT A, V70, P184
[3]   COMPUTER STUDIES IN SELF-FOCUSING [J].
DAWES, EL ;
MARBURGER, JH .
PHYSICAL REVIEW, 1969, 179 (03) :862-+
[4]   BEAM NONPARAXIALITY, FILAMENT FORMATION, AND BEAM BREAKUP IN THE SELF-FOCUSING OF OPTICAL BEAMS [J].
FEIT, MD ;
FLECK, JA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1988, 5 (03) :633-640
[5]   BEAM SELF-FOCUSING IN THE PRESENCE OF A SMALL NORMAL TIME DISPERSION [J].
FIBICH, G ;
MALKIN, VM ;
PAPANICOLAOU, GC .
PHYSICAL REVIEW A, 1995, 52 (05) :4218-4228
[6]   Small beam non-paraxiality arrests self-focusing of optical beams [J].
Fibich, G .
PHYSICAL REVIEW LETTERS, 1996, 76 (23) :4356-4359
[7]  
FRAIMAN GM, 1985, ZH EKSP TEOR FIZ, V61, P228
[8]   SELF-FOCUSING OF OPTICAL BEAMS [J].
KELLEY, PL .
PHYSICAL REVIEW LETTERS, 1965, 15 (26) :1005-&
[9]   RATE OF BLOWUP FOR SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION AT CRITICAL DIMENSION [J].
LANDMAN, MJ ;
PAPANICOLAOU, GC ;
SULEM, C ;
SULEM, PL .
PHYSICAL REVIEW A, 1988, 38 (08) :3837-3843
[10]   LOCAL-STRUCTURE OF THE SELF-FOCUSING SINGULARITY OF THE NONLINEAR SCHRODINGER-EQUATION [J].
LEMESURIER, BJ ;
PAPANICOLAOU, GC ;
SULEM, C ;
SULEM, PL .
PHYSICA D, 1988, 32 (02) :210-226