Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats

被引:168
作者
Napel, Sandy [1 ]
Mu, Wei [2 ]
Jardim-Perassi, Bruna V. [2 ]
Aerts, Hugo J. W. L. [3 ]
Gillies, Robert J. [2 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Physiol, Tampa, FL USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Boston, MA USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; deep learning; habitat imaging; image analytics; machine learning; radiomics; CONTRAST-ENHANCED-MRI; CONVOLUTIONAL NEURAL-NETWORKS; DELTA-RADIOMICS FEATURES; RIF-1; TUMOR-MODEL; PROSTATE-CANCER; BREAST-CANCER; INTRATUMORAL HETEROGENEITY; TEXTURE FEATURES; LUNG NODULES; GLIOBLASTOMA-MULTIFORME;
D O I
10.1002/cncr.31630
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Although cancer often is referred to as "a disease of the genes," it is indisputable that the (epi)genetic properties of individual cancer cells are highly variable, even within the same tumor. Hence, preexisting resistant clones will emerge and proliferate after therapeutic selection that targets sensitive clones. Herein, the authors propose that quantitative image analytics, known as "radiomics," can be used to quantify and characterize this heterogeneity. Virtually every patient with cancer is imaged radiologically. Radiomics is predicated on the beliefs that these images reflect underlying pathophysiologies, and that they can be converted into mineable data for improved diagnosis, prognosis, prediction, and therapy monitoring. In the last decade, the radiomics of cancer has grown from a few laboratories to a worldwide enterprise. During this growth, radiomics has established a convention, wherein a large set of annotated image features (1-2000 features) are extracted from segmented regions of interest and used to build classifier models to separate individual patients into their appropriate class (eg, indolent vs aggressive disease). An extension of this conventional radiomics is the application of "deep learning," wherein convolutional neural networks can be used to detect the most informative regions and features without human intervention. A further extension of radiomics involves automatically segmenting informative subregions ("habitats") within tumors, which can be linked to underlying tumor pathophysiology. The goal of the radiomics enterprise is to provide informed decision support for the practice of precision oncology. Cancer 2018;124:4633-4649. (C) 2018 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.
引用
收藏
页码:4633 / 4649
页数:17
相关论文
共 194 条
[1]   Integrative Radiogenomic Profiling of Squamous Cell Lung Cancer [J].
Abazeed, Mohamed E. ;
Adams, Drew J. ;
Hurov, Kristen E. ;
Tamayo, Pablo ;
Creighton, Chad J. ;
Sonkin, Dmitriy ;
Giacomelli, Andrew O. ;
Du, Charles ;
Fries, Daniel F. ;
Wong, Kwok-Kin ;
Mesirov, Jill P. ;
Loeffler, Jay S. ;
Schreiber, Stuart L. ;
Hammerman, Peter S. ;
Meyerson, Matthew .
CANCER RESEARCH, 2013, 73 (20) :6289-6298
[2]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[3]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[4]  
[Anonymous], 2006, ADV NEURAL INFORM PR
[5]  
[Anonymous], 2016, COMPUT MATH METHOD M
[6]  
[Anonymous], 2014, IEEE COMPUT SOC CONF, DOI [10.1109/cvprw.2014.131, DOI 10.1109/CVPRW.2014.131]
[7]   Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network [J].
Anthimopoulos, Marios ;
Christodoulidis, Stergios ;
Ebner, Lukas ;
Christe, Andreas ;
Mougiakakou, Stavroula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1207-1216
[8]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[9]  
BAHI Kaggle, 2017, Kaggle Data Science Bowl
[10]   Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: A pilot study [J].
Bakr, Shaimaa ;
Echegaray, Sebastian ;
Shah, Rajesh ;
Kamaya, Aya ;
Louie, John ;
Napel, Sandy ;
Kothary, Nishita ;
Gevaert, Olivier .
Journal of Medical Imaging, 2017, 4 (04)