Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise

被引:42
作者
Jentzen, Arnulf [2 ]
Roeckner, Michael [1 ,3 ]
机构
[1] Univ Bielefeld, Fac Math, D-33615 Bielefeld, Germany
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Purdue Univ, Dept Math & Stat, W Lafayette, IN 47907 USA
关键词
Stochastic partial differential equations; Regularity analysis; Nonlinear multiplicative noise; UMD BANACH-SPACES; EVOLUTION EQUATIONS;
D O I
10.1016/j.jde.2011.08.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article spatial and temporal regularity of the solution process of a stochastic partial differential equation (SPDE) of evolutionary type with nonlinear multiplicative trace class noise is analyzed. (C) 2011 Published by Elsevier Inc.
引用
收藏
页码:114 / 136
页数:23
相关论文
共 19 条
[1]  
[Anonymous], 2009, Lecture Notes. Scuola Normale Superiore di Pisa (New Series)
[2]  
[Anonymous], 2002, APPL MATH SCI
[3]  
[Anonymous], 1992, MONOGR MATH
[4]  
[Anonymous], 1992, ENCY MATH APPL
[5]  
Brzeniak Z., 1997, STOCHASTICS STOCHAST, V61, P245
[6]   Ito's formula in UMD Banach spaces and regularity of solutions of the Zakai equation [J].
Brzezniak, Z. ;
van Neerven, J. M. A. M. ;
Veraar, M. C. ;
Weis, L. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (01) :30-58
[7]   Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise [J].
Brzezniak, Z ;
van Neerven, J .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 43 (02) :261-303
[8]  
Kotelenez P., 1982, Stochastics, V8, P139, DOI 10.1080/17442508208833233
[9]  
Krylov N.V., 1979, CURRENT PROBLEMS MAT, V14, P256
[10]   A W(2)(N)-THEORY OF THE DIRICHLET PROBLEM FOR SPDES IN GENERAL SMOOTH DOMAINS [J].
KRYLOV, NV .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 98 (03) :389-421