Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion

被引:9
|
作者
Abe, S [1 ]
机构
[1] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 3058571, Japan
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.016102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on the canonical formalism, the dilatation symmetry is implemented to the Fokker-Planck equation for the Wigner distribution that describes atomic motion in an optical lattice. This reveals the symmetry principle underlying the recent result obtained by Lutz [Phys. Rev. A 67, 051402(R) (2003)] on the connection between anomalous transport in the optical lattice and Tsallis statistics in the high-energy regime. A condition is derived for the general linear Fokker-Planck equation to admit a nonstationary solution distribution that decays as a power law.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347
  • [2] Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation
    da Silva, PC
    da Silva, LR
    Lenzi, EK
    Mendes, RS
    Malacarne, LC
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 16 - 21
  • [3] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [4] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)
  • [5] A generalized Fokker-Planck equation for anomalous diffusion in velocity space
    Dubinova, A. A.
    Trigger, S. A.
    PHYSICS LETTERS A, 2012, 376 (24-25) : 1930 - 1936
  • [6] Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions
    Lenzi, EK
    Malacarne, LC
    Mendes, RS
    Pedron, IT
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 245 - 252
  • [7] Anomalous diffusion: Fractional Fokker-Planck equation and its solutions
    Lenzi, EK
    Mendes, RS
    Fa, KS
    Malacarne, LC
    da Silva, LR
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) : 2179 - 2185
  • [8] SEARCH FOR THE SYMMETRY OF THE FOKKER-PLANCK EQUATION
    AN, I
    CHEN, S
    GUO, H
    PHYSICA A, 1984, 128 (03): : 520 - 528
  • [9] EFFECTIVE DIFFUSION IN THE FOKKER-PLANCK EQUATION
    KOZLOV, SM
    MATHEMATICAL NOTES, 1989, 45 (5-6) : 360 - 368
  • [10] Fokker-Planck equation in a wedge domain: Anomalous diffusion and survival probability
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICAL REVIEW E, 2009, 80 (02):